<?xml version="1.0" encoding="Shift_JIS" ?>

Original Mathematica File

Quiz01

Quiz02

第一章 微分方程式

T、1 微分方程式と曲線群

T問1

In[2]:=

Eliminate[{y == c Exp[2 x], y ' == D[c Exp[2 x], x]}, c]

Out[2]=

y^' == 2 y

In[3]:=

Plot[Evaluate[Table[c Exp[2 x], {c, -10, 10, .5}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_4.gif]

Out[3]=

-Graphics -

In[4]:=

SetAttributes[c, Constant]

In[5]:=

Eliminate[{x^2 + y^2 - 2 c x == 0, Dt[x^2 + y^2 - 2 c x, x] == 0}, c]

Out[5]=

2 x y Dt[y, x] == -x^2 + y^2

In[6]:=

<< Graphics`ImplicitPlot`

In[7]:=

ImplicitPlot[Evaluate[Table[x^2 + y^2 - 2 c x == 0, {c, -10, 10, .5}]], {x, -20, 20}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_11.gif]

Out[7]=

-Graphics -

T問2

In[8]:=

SetAttributes[ {a, b}, Constant]

In[9]:=

Eliminate[{a y^2 - 4 (x + b) == 0, Dt[a y^2 - 4 (x + b), x] == 0, Dt[a y^2 - 4 (x + b), {x, 2}] == 0}, {a, b}]

Out[9]=

y Dt[y, {x, 2}] == -Dt[y, x]^2

In[10]:=

Eliminate[{y - (a Sin[2 x] + b Cos[2 x]) == 0, Dt[y - (a Sin[2 x] + b Cos[2 x]), x] == 0, Dt[y - (a Sin[2 x] + b Cos[2 x]), {x, 2}] == 0}, {a, b}]

Out[10]=

-Dt[y, {x, 2}] == 4 y

T問題

T1.(1)

In[11]:=

Eliminate[{y - Sqrt[x + c] == 0, Dt[y - Sqrt[x + c], x] == 0}, c]

Out[11]=

2 y Dt[y, x] == 1

In[12]:=

Plot[Evaluate[Table[ If[x + c >= 0, Evaluate[ Sqrt[x + c]], 0], {c, -10, 10, .5}]], {x, -10, 10}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_21.gif]

Out[12]=

-Graphics -

T1.(2)

In[13]:=

Eliminate[{c x^2 - y^2 == 1, Dt[c x^2 - y^2, x] == 0}, c]

Out[13]=

x y Dt[y, x] == 1 + y^2

Mathematicaで逆に微分方程式を解いてみよう。以下の解が元の
式と等しいことに注意せよ。

In[14]:=

DSolve[x y[x] Dt[y[x], x] == 1 + y[x]^2, y[x], x]

Out[14]=

{{y[x] -> -(-1 + e^(2 (C[1] + Log[x])))^(1/2)}, {y[x] -> (-1 + e^(2 (C[1] + Log[x])))^(1/2)}}

In[15]:=

ImplicitPlot[Evaluate[Table[ c x^2 - y^2 == 1, {c, -2, 2, .1}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_28.gif]

Out[15]=

-Graphics -

T1.(3)

In[16]:=

Eliminate[{y - c/x - c == 0, Dt[y - c/x - c, x] == 0}, c]

Out[16]=

y == (-1 - x) x Dt[y, x] && x != 0

Mathematicaで逆に微分方程式を解いてみよう。以下の解が元の
式と等しいことに注意せよ。

In[17]:=

DSolve[y[x] == (-1 - x) x Dt[y[x], x], y[x], x]

Out[17]=

{{y[x] -> e^(-Log[x] + Log[1 + x]) C[1]}}

In[18]:=

Simplify[%]

Out[18]=

{{y[x] -> ((1 + x) C[1])/x}}

In[19]:=

Plot[Evaluate[Table[ -c/x - c, {c, -2, 2, .1}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_37.gif]

Out[19]=

-Graphics -

T2,(1)

In[20]:=

ImplicitPlot[Evaluate[Table[ y^2 + (x - c)^2 == 4, {c, -2, 2, .1}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_40.gif]

Out[20]=

-Graphics -

In[21]:=

Eliminate[{y^2 + (x - c)^2 == 4, Dt[y^2 + (x - c)^2, x] == 0}, c]

Out[21]=

y^2 Dt[y, x]^2 == 4 - y^2

T2,(2)

In[22]:=

ImplicitPlot[Evaluate[Table[ y^2 - 4 c (x + c) == 0, {c, -2, 2, .1}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_45.gif]

Out[22]=

-Graphics -

In[23]:=

Eliminate[{y^2 - 4 c (x + c) == 0, Dt[y^2 - 4 c (x + c), x] == 0}, c]

Out[23]=

2 x y Dt[y, x] + y^2 Dt[y, x]^2 == y^2

In[24]:=

DSolve[y[x] Dt[y[x], x] == 4 x, y[x], x]

Out[24]=

{{y[x] -> -2^(1/2) (2 x^2 + C[1])^(1/2)}, {y[x] -> 2^(1/2) (2 x^2 + C[1])^(1/2)}}

T2,(3)

In[25]:=

ImplicitPlot[Evaluate[Table[ y^2 - (2 x)^2 == c^2, {c, -2, 2, .1}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -10, 10, .5}]]

[Graphics:HTMLFiles/MathAChap1_52.gif]

Out[25]=

-Graphics -

In[26]:=

Eliminate[{y^2 - (2 x)^2 == c^2, Dt[y^2 - (2 x)^2, x] == 0}, c]

Out[26]=

y Dt[y, x] == 4 x

T、2 微分方程式の解

T例題1

In[27]:=

DSolve[x + y[x] y '[x] == 0, y[x], x]

Out[27]=

{{y[x] -> -2^(1/2) (-x^2/2 + C[1])^(1/2)}, {y[x] -> 2^(1/2) (-x^2/2 + C[1])^(1/2)}}

In[28]:=

<< Graphics`ImplicitPlot`

In[29]:=

ImplicitPlot[Evaluate[Table[x^2 + y^2 == c^2, {c, 0, 10, .5}]], {x, -10, 10}, PlotStyle -> Table[Hue[c/10], {c, 0, 10, 0.5}]]

[Graphics:HTMLFiles/MathAChap1_60.gif]

Out[29]=

-Graphics -

T例題2

In[30]:=

DSolve[y '[x]^2 == 4 y[x], y[x], x]

Out[30]=

{{y[x] -> 1/4 (4 x^2 - 4 x C[1] + C[1]^2)}, {y[x] -> 1/4 (4 x^2 + 4 x C[1] + C[1]^2)}}

In[31]:=

Plot[Evaluate[Table[(x - c)^2, {c, 0, 10, .5}]], {x, -5, 10}, PlotStyle -> Table[Hue[c/10], {c, 0, 10, 0.5}]]

[Graphics:HTMLFiles/MathAChap1_65.gif]

Out[31]=

-Graphics -

T演習問題 1−1 [A]

T1 (1)

In[32]:=

Eliminate[{y == Sin[x + c], y ' == D[Sin[x + c], x]}, c]

Eliminate :: ifun :  逆関数が Eliminate で使われています.求められない解がある可能性があります.

Out[32]=

1 - (y^')^2 == y^2

T1 (2)

In[33]:=

Eliminate[{y == Tan[x + c], y ' == D[Tan[x + c], x]}, c]

Eliminate :: ifun :  逆関数が Eliminate で使われています.求められない解がある可能性があります.

Out[33]=

y^2 == -1 + y^' && Cos[c + x]^2 y^' == 1

T1 (3)

In[34]:=

SetAttributes[{a, b}, Constant]

In[35]:=

Eliminate[{a x^2 + b y^2 == 1, Dt[ a x^2 + b y^2, x] == 0, Dt[ a x^2 + b y^2, {x, 2}] == 0}, {a, b}]

Out[35]=

x y Dt[y, {x, 2}] == Dt[y, x] (y - x Dt[y, x])

T1 (4)

In[36]:=

Eliminate[{y == a x + b/x, Dt[ y - a x - b/x, x] == 0, Dt[ y - a x - b/x, {x, 2}] == 0}, {a, b}]

Out[36]=

y == x (Dt[y, x] + x Dt[y, {x, 2}]) && x != 0

T2 (1)

In[37]:=

g1 = Plot[x^2/2, {x, -5, 5}]

[Graphics:HTMLFiles/MathAChap1_79.gif]

Out[37]=

-Graphics -

In[38]:=

g2 = Plot[Evaluate[Table[c (x - c) + c^2/2, {c, -5, 5, .5}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/10], {c, -5, 5, .5}]]

[Graphics:HTMLFiles/MathAChap1_82.gif]

Out[38]=

-Graphics -

[Graphics:HTMLFiles/MathAChap1_84.gif]

-Graphics -

In[39]:=

Show[g2, g1, PlotRange -> {0, 12.5}]

[Graphics:HTMLFiles/MathAChap1_87.gif]

Out[39]=

-Graphics -

In[40]:=

SetAttributes[c, Constant]

In[41]:=

Eliminate[{y == c (x - c) + c^2/2, Dt[y - c (x - c) - c^2/2, x] == 0}, c]

Out[41]=

(2 x - Dt[y, x]) Dt[y, x] == 2 y

T2 (2)

In[42]:=

<< Graphics`ImplicitPlot`

In[43]:=

ImplicitPlot[Evaluate[Table[(y - c)^2 + x^2 == c^2, {c, 0, 5, .2}]], {x, -5, 5}, PlotStyle -> Table[Hue[c/5], {c, 0, 5, .2}]]

[Graphics:HTMLFiles/MathAChap1_94.gif]

Out[43]=

-Graphics -

In[44]:=

SetAttributes[c, Constant]

In[45]:=

Eliminate[{(y - c)^2 + x^2 == c^2, Dt[(y - c)^2 + x^2, x] == 0}, c]

Out[45]=

(x^2 - y^2) Dt[y, x] == 2 x y

In[46]:=

ハハ

T演習問題 1−1 [B]

T3(1)

In[47]:=

Solve[{(1 - a)^2 + b^2 == c^2, (-1 - a)^2 + b^2 == c^2}, {a, b}]

Out[47]=

{{b -> -(-1 + c^2)^(1/2), a -> 0}, {b -> (-1 + c^2)^(1/2), a -> 0}}

In[48]:=

ImplicitPlot[Evaluate[Flatten[Table[{x^2 + (y - (-1 + c^2)^(1/2))^2 == c^2, x^2 + (y + (-1 + c ... 2))^2 == c^2}, {c, 1, 10, .5}]]], {x, -10, 10}, PlotStyle -> Table[Hue[c/10], {c, 1, 10, .5} ]]

[Graphics:HTMLFiles/MathAChap1_103.gif]

Out[48]=

-Graphics -

In[49]:=

Eliminate[{x^2 + (y - (-1 + c^2)^(1/2))^2 == c^2, Dt[x^2 + (y - (-1 + c^2)^(1/2))^2 , x] == 0}, c]

Out[49]=

(-1 + x^2 - y^2) Dt[y, x] == 2 x y

In[50]:=

Eliminate[{x^2 + (y + (-1 + c^2)^(1/2))^2 == c^2, Dt[x^2 + (y + (-1 + c^2)^(1/2))^2 , x] == 0}, c]

Out[50]=

(-1 + x^2 - y^2) Dt[y, x] == 2 x y

T3(2)

In[51]:=

SetAttributes[{a, b}, Constant]

In[52]:=

? a

Global`a

Attributes[a] = {Constant}

In[53]:=

Eliminate[{y == a Exp[x] + b Exp[2 x], Dt[a Exp[x] + b Exp[2 x] - y , x] == 0, Dt[a Exp[x] + b Exp[2 x] - y, {x, 2}] == 0}, {a, b}]

Out[53]=

3 Dt[y, x] - Dt[y, {x, 2}] == 2 y


Converted by Mathematica ハ(April 23, 2003)