# Numerical radius inequalities related to the geometric means of negative power 

The Fifteenth Workshop on Numerical Ranges and Numerical Radii (WONRA) 2019
Toyo University, Kawagoe Campus

## Yuki Seo

Osaka Kyoiku University
June 21-24, 2019

## Contents

(1) Motivation
(2) Norm inequality for geometric means of negative power
(3) Numerical radius inequality for geometric means

## Motivation

Let $\mathbb{M}_{n}=\mathbb{M}_{n}(\mathbb{C})$ be the algebra of $n \times n$ complex matrices. For $A \in \mathbb{M}_{n}$, we write $A \geq 0$ if $A$ is positive semidefinite and $A>0$ if $A$ is positive definite, that is, $A$ is positive and invertible. For two Hermitian matrices $A$ and $B$, we write $A \geq B$ if $A-B \geq 0$, and it is called the Löwner partial ordering. A norm $\|\cdot\|$ on $\mathbb{M}_{n}$ is said to be unitarily invariant if $\|U X V\|=\|X\|$ for all $X \in \mathbb{M}_{n}$ and unitary $U, V$.
For any matrix $A \in \mathbb{M}_{n}$, the numerical radius $w(A)$ is defined by

$$
w(A)=\sup \left\{|\langle A x, x\rangle|:\|x\|=1, x \in \mathbb{C}^{n}\right\}
$$

Then the numerical radius is unitarily similar: $w\left(U^{*} A U\right)=w(A)$ for all unitary $U$.

## Motivation

## Geometric means $A^{1-\alpha} B^{\alpha}, A \not \sharp_{\alpha} B$ and $A \diamond_{\alpha} B$

Let $A$ and $B$ be positive definite matrices. The $\alpha$-geometric mean $A \not \sharp_{\alpha} B$ is defined by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for all } \alpha \in[0,1] .
$$

The chaotic geometric mean $A \diamond_{\alpha} B$ is defined by

$$
A \diamond_{\alpha} B=e^{(1-\alpha) \log A+\alpha \log B} \quad \text { for all } \alpha \in \mathbb{R}
$$

If $A$ and $B$ commute, then $A \sharp_{\alpha} B=A \diamond_{\alpha} B=A^{1-\alpha} B^{\alpha}$ for all $\alpha \in[0,1]$. However, we have no relation among $A \sharp_{\alpha} B, A \diamond_{\alpha} B$ and $A^{1-\alpha} B^{\alpha}$ for all $\alpha \in[0,1]$ under the Löwner partial order.

Remark:

$$
A \diamond_{\alpha} B=\lim _{p \rightarrow 0}\left((1-\alpha) A^{p}+\alpha B^{p}\right)^{\frac{1}{p}}
$$

## Motivation

## Specht ratio

Specht estimated the upper bound of the arithmeticmean by the geometric one for positive numbers: For $x_{1}, \ldots, x_{n} \in[m, M]$,

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq S(h) \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

where $h=\frac{M}{m}$ and the Specht ratio is defined by

$$
S(h)=\frac{(h-1) h^{\frac{1}{h-1}}}{e \log h}(h \neq 1) \quad \text { and } \quad S(1)=1
$$

## Motivation

## Specht ratio

Specht estimated the upper bound of the arithmeticmean by the geometric one for positive numbers: For $x_{1}, \ldots, x_{n} \in[m, M]$,

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq S(h) \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

where $h=\frac{M}{m}$ and the Specht ratio is defined by

$$
S(h)=\frac{(h-1) h^{\frac{1}{n-1}}}{e \log h}(h \neq 1) \quad \text { and } \quad S(1)=1
$$

## Comparison between $A \sharp_{\alpha} B$ and $A \diamond_{\alpha} B$

Let $A, B$ be positive definite matrices with $m l \leq A, B \leq M I$. Then

$$
S(h)^{-1} A \diamond_{\alpha} B \leq A \sharp_{\alpha} B \leq S(h) A \diamond_{\alpha} B
$$

## Motivation

## Norm inequality for geometric means

Let $A, B$ be positive definite matrices. Then for every unitarily invariant norm \|||||

$$
\left\|A \sharp_{\alpha} B\right\| \leq\left\|A \diamond_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { for all } \alpha \in[0,1] .
$$

## Motivation

## Norm inequality for geometric means

Let $A, B$ be positive definite matrices. Then for every unitarily invariant norm \||•\|

$$
\left\|A \sharp_{\alpha} B\right\| \leq\left\|A \diamond_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { for all } \alpha \in[0,1] .
$$

We have the following numerical radius inequalities:

## Numerical dadius inequality for geometric means

Let $A, B$ be positive definite matrices. Then

$$
w\left(A \sharp_{\alpha} B\right) \leq w\left(A \diamond_{\alpha} B\right) \leq w\left(A^{1-\alpha} B^{\alpha}\right) \quad \text { for all } \alpha \in[0,1],
$$

## Motivation

## The purpose of this talk

We discuss numerical radius inequalities related to the geometric means. Though the numerical radius is not unitarily invariant norm, the numerical radius is unitarily similar. In this talk, we show numerical radius inequalities related to the geometric means of negative power for positive definite matrices.

## Contents

## (1) Motivation

(2) Norm inequality for geometric means of negative power

## (3) Numerical radius inequality for geometric means

## Geometric mean of negative power

## Geometric mean of negative power

The $\beta$-quasi geometric mean $A \natural_{\beta} B$ is defined by

$$
A দ_{\beta} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}} \quad \text { for all } \beta \in[-1,0),
$$

whose formula is the same as $\not \sharp_{\alpha}$.
The chaotic geometric mean $A \diamond_{\beta} B$ is defined by

$$
A \diamond_{\beta} B=e^{(1-\beta) \log A+\beta \log B} \quad \text { for all } \beta \in[-1,0)
$$

The geometric mean is $A^{1-\beta} B^{\beta}$ for $\beta \in[-1,0)$.

## Geometric mean of negative power

## Geometric mean of negative power

The $\beta$-quasi geometric mean $A \natural_{\beta} B$ is defined by

$$
A দ_{\beta} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}} \quad \text { for all } \beta \in[-1,0),
$$

whose formula is the same as $\not \sharp_{\alpha}$.
The chaotic geometric mean $A \diamond_{\beta} B$ is defined by

$$
A \diamond_{\beta} B=e^{(1-\beta) \log A+\beta \log B} \quad \text { for all } \beta \in[-1,0)
$$

The geometric mean is $A^{1-\beta} B^{\beta}$ for $\beta \in[-1,0)$.

$$
\left\|A \sharp_{\alpha} B\right\| \leq\left\|A \diamond_{\alpha} B\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| \quad \text { for all } \alpha \in[0,1] .
$$

## Geometric mean of negative power

## Ando-Hiai inequality

Let $A, B$ be positive definite matrices. Then

$$
\left\|A \sharp_{\alpha} B\right\| \leq\left\|A \diamond_{\alpha} B\right\| \quad \text { for all } \alpha \in[0,1] .
$$

The log-majorization theorem due to Ando-Hiai: For each $\alpha \in(0,1]$

$$
A^{r} \sharp_{\alpha} B^{r} \prec(\log )\left(A \not \sharp_{\alpha} B\right)^{r} \quad \text { for all } r \geq 1 \text {. }
$$

This implies

$$
\left\|\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}}\right\| \leq\left\|\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}}\right\| \| \quad \text { for } 0<q<p .
$$

Lie-Trotter formula is

$$
A \diamond_{\alpha} B=\lim _{q \rightarrow 0}\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \quad \text { for } \alpha \in(0,1]
$$

## Geometric mean of negative power

## Ando-Hiai log-majorization of negative power

Let $A, B$ be positive definite matrices and $\beta \in[-1,0)$. Then

$$
A^{r} দ_{\beta} B^{r} \prec_{(\log )}\left(A দ_{\beta} B\right)^{r} \quad \text { for all } r \in(0,1]
$$

or equivalently

$$
\left(A^{q} দ_{\beta} B^{q}\right)^{\frac{1}{q}} \prec_{(\log )}\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}} \quad \text { for all } 0<q<p
$$

## Geometric mean of negative power

## Proof

By the antisymmetric tensor power technique, in order to prove $\left(^{*}\right)$, it suffices to show that

$$
\begin{equation*}
\lambda_{1}\left(A^{r} দ_{\beta} B^{r}\right) \leq \lambda_{1}\left(A দ_{\beta} B\right)^{r} \quad \text { for all } 0<r \leq 1 . \tag{1}
\end{equation*}
$$

For this purpose we may prove that $A \hbar_{\beta} B \leq I$ implies $A^{r} \hbar_{\beta} B^{r} \leq I$, because both sides of (1) have the same order of homogeneity for $A, B$, so that we can multiply $A, B$ by a positive constant.
First let us assume $\frac{1}{2} \leq r \leq 1$ and write $r=1-\varepsilon$ with $0 \leq \varepsilon \leq \frac{1}{2}$. Let $C=A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$. Then $B^{-1}=A^{-\frac{1}{2}} C A^{-\frac{1}{2}}$ and $A দ_{\beta} B=A^{\frac{1}{2}} C^{-\beta} A^{\frac{1}{2}}$. If $A \natural_{\beta} B \leq I$, then $C^{-\beta} \leq A^{-1}$ so that $A \leq C^{\beta}$ and $A^{\varepsilon} \leq C^{\beta \varepsilon}$ for $0 \leq \varepsilon \leq \frac{1}{2}$ by Löwner-Heinz inequality.

## Geometric mean of negative power

## Proof

Since $-\beta \in(0,1]$ and $1-\varepsilon \in\left[\frac{1}{2}, 1\right]$, we now get

$$
\begin{aligned}
A^{r} দ_{\beta} B^{r} & =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{\varepsilon-1}{2}} B^{1-\varepsilon} A^{\frac{\varepsilon-1}{2}}\right)^{\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{1-\varepsilon}{2}}\left(B^{-1}\right)^{1-\varepsilon} A^{\frac{1-\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{1-\varepsilon}{2}}\left(A^{-\frac{1}{2}} C A^{-\frac{1}{2}}\right)^{1-\varepsilon} A^{\frac{1-\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{-\frac{\varepsilon}{2}}\left[A \sharp_{1-\varepsilon} C\right] A^{-\frac{\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1}{2}-\varepsilon}\left[A^{\varepsilon} \sharp_{-\beta}\left(A \sharp_{1-\varepsilon} C\right)\right] A^{\frac{1}{2}-\varepsilon} \\
& \leq A^{\frac{1}{2}-\varepsilon}\left[C^{\alpha \varepsilon} \not \sharp_{-\alpha}\left(C^{\alpha} \sharp_{1-\varepsilon} C\right)\right] A^{\frac{1}{2}-\varepsilon},
\end{aligned}
$$

## Geometric mean of negative power

## Proof

using the joint monotonicity of matrix geometric means. Since a direct computation yields

$$
C^{\beta \varepsilon} \sharp_{-\beta}\left(C^{\beta} \sharp_{1-\varepsilon} C\right)=C^{\beta(2 \varepsilon-1)}
$$

and by Löwner-Heinz inequality and $0 \leq 1-2 \varepsilon \leq 1, C^{-\alpha} \leq A^{-1}$ implies $C^{-\beta(1-2 \varepsilon)} \leq A^{-(1-2 \varepsilon)}$ and thus we get

$$
A^{r} দ_{\beta} B^{r} \leq A^{\frac{1}{2}-\varepsilon} C^{\beta(2 \varepsilon-1)} A^{\frac{1}{2}-\varepsilon} \leq A^{\frac{1}{2}-\varepsilon} A^{-1+2 \varepsilon} A^{\frac{1}{2}-\varepsilon}=I
$$

Therefore (1) is proved in the case of $\frac{1}{2} \leq r \leq 1$.

## Geometric mean of negative power

## Proof

When $0<r<\frac{1}{2}$, writing $r=2^{-k}(1-\varepsilon)$ with $k \in \mathbb{N}$ and $0 \leq \varepsilon \leq \frac{1}{2}$, and repeating the argument above we have

$$
\begin{aligned}
\lambda_{1}\left(A^{r} দ_{\beta} B^{r}\right) & \leq \lambda_{1}\left(A^{2^{-(k-1)}(1-\varepsilon)} দ_{\beta} B^{2^{-(k-1)}(1-\varepsilon)}\right)^{\frac{1}{2}} \\
& \vdots \\
& \leq \lambda_{1}\left(A^{1-\varepsilon} দ_{\beta} B^{1-\varepsilon}\right)^{2^{-k}} \\
& \leq \lambda_{1}\left(A \vdash_{\beta} B\right)^{r}
\end{aligned}
$$

and so we have the Ando-Hiai log-majorization

$$
\begin{equation*}
A^{r} দ_{\beta} B^{r} \prec_{(\log )}\left(A দ_{\beta} B\right)^{r} \quad \text { for all } r \in(0,1] \tag{*}
\end{equation*}
$$

## Geometric mean of negative power

By the Ando-Hiai log-majorization of negative power,

$$
\left\|\left(A^{q} দ_{\beta} B^{q}\right)^{\frac{1}{q}}\right\| \leq\left\|\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}}\right\| \| \quad \text { for all } 0<q<p
$$

we have the following norm inequalities for geometric means of negative power:

## Theorem 1

Let $A$ and $B$ be positive definite matrices. Then for every unitarily invariant norm

$$
\begin{array}{cl}
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| & \text { for all } \beta \in[-1,0) . \\
\left\|A দ_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| & \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
\end{array}
$$

## Geometric mean of negative power

## Proof of Theorem 1

By the Ando-Hiai log-majorization of negative power, it follows that

$$
\left\|\left(A^{q} দ_{\beta} B^{q}\right)^{\frac{1}{q}}\right\| \leq\left\|\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}}\right\| \| \quad \text { for all } 0<q<p
$$

and as $q \rightarrow 0$ and $p=1$ we have the desired inequality by the Lie-Trotter formula:

$$
A \diamond_{\beta} B=\lim _{q \rightarrow 0}\left(A^{q} \sharp_{\beta} B^{q}\right)^{\frac{1}{q}} \quad \text { for } \beta \in[-1,0)
$$

and thus

$$
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| \quad \text { for all } \beta \in[-1,0)
$$

## Geometric mean of negative power

## Proof of Theorem 1

For the matrix norm $\|\cdot\|$, by the Araki-Cordes inequality $\left\|B^{t} A^{t} B^{t}\right\| \leq\left\|(B A B)^{t}\right\|$ for all $t \in[0,1]$, we have for $-1 \leq \beta \leq-\frac{1}{2}$

$$
\begin{aligned}
\left\|A দ_{\beta} B\right\| & =\left\|A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}}\right\| \\
& =\left\|A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right)^{-\beta} A^{\frac{1}{2}}\right\| \\
& \leq\left\|A^{-\frac{1}{2 \beta}} A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}} A^{-\frac{1}{2 \beta}}\right\|^{-\beta} \quad \text { by } \frac{1}{2} \leq-\beta \leq 1 \\
& =\left\|A^{\frac{\beta-1}{2 \beta}} B^{-1} A^{\frac{\beta-1}{2 \beta}}\right\|^{-\beta} \\
& \leq\left\|A^{1-\beta} B^{2 \beta} A^{1-\beta}\right\|^{\frac{1}{2}} \quad \text { for } \frac{1}{2} \leq-\frac{1}{2 \beta} \leq 1 \\
& =\left\|\left(A^{1-\beta} B^{2 \beta} A^{1-\beta}\right)^{\frac{1}{2}}\right\|
\end{aligned}
$$

## Geometric mean of negative power

## Proof of Theorem 1

and so we have

$$
\lambda_{1}\left(A দ_{\beta} B\right) \leq \lambda_{1}\left(\left(A^{1-\beta} B^{2 \beta} A^{1-\beta}\right)^{\frac{1}{2}}\right)=\lambda_{1}\left(\left|B^{\beta} A^{1-\beta}\right|\right)
$$

This implies

$$
\prod_{i=1}^{k} \lambda_{i}\left(A \natural_{\beta} B\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(\left|B^{\beta} A^{1-\beta}\right|\right) \quad \text { for } k=1, \ldots, n .
$$

Hence we have the weak $\log$ majorization $A দ_{\beta} B \prec_{w(\log )}\left|B^{\beta} A^{1-\beta}\right|$ and this implies

$$
\left\|A দ_{\beta} B\right\| \leq\| \|\left|B^{\beta} A^{1-\beta}\right|\| \|=\left\|B^{\beta} A^{1-\beta}\right\|\|=\| A^{1-\beta} B^{\beta} \|
$$

for every unitarily invariant norm.

## Geometric mean of negative power

Let $A$ and $B$ be positive definite matrices. Then

$$
\begin{array}{cc}
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| & \text { for all } \beta \in[-1,0) . \\
\left\|A দ_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| & \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
\end{array}
$$

## Geometric mean of negative power

Let $A$ and $B$ be positive definite matrices. Then

$$
\begin{array}{cc}
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| & \text { for all } \beta \in[-1,0) . \\
\left\|A দ_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| & \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
\end{array}
$$

## Remark

In Theorem 1, the inequality $\left\|A \natural_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\|$ does not always hold for $-1 / 2<\beta<0$. In fact, if we put $\beta=-\frac{1}{3}, A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and
$B=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, then we have the matrix norm $\left\|A \natural_{-\frac{1}{3}} B\right\|=3.385$ and
$\left\|A^{\frac{4}{3}} B^{-\frac{1}{3}}\right\|=3.375$, and so $\left\|A দ_{\beta} B\right\|>\left\|A^{1-\beta} B^{\beta}\right\|$.

## Geometric mean of negative power

## Theorem 1

Let $A$ and $B$ be positive definite matrices. Then for every unitarily invariant norm

$$
\left\|A \diamond_{\beta} B\right\| \leq\left\|A \natural_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
$$

## Geometric mean of negative power

## Theorem 1

Let $A$ and $B$ be positive definite matrices. Then for every unitarily invariant norm

$$
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| \| \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
$$

## Conjecture

Let $A$ and $B$ be positive definite matrices. Then

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A দ_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
$$

## Geometric mean of negative power

## counterexample

We would expect that the numerical radius inequality

$$
w\left(A \natural_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] .
$$

However, the numerical radius $w(\cdot)$ is not unitarily invariant norm and unitarily similar. In fact, we have the following counterexample: We consider the case of $\beta=-\frac{1}{2}$. Put

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)
$$

## Geometric mean of negative power

## counterexample

and we have

$$
A \bigsqcup_{-\frac{1}{2}} B=A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}=\left(\begin{array}{cc}
\frac{\sqrt{5}}{3} & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
A^{\frac{3}{2}} B^{-\frac{1}{2}}=\left(\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
0 & 0
\end{array}\right)
$$

Then we have $w\left(A^{\frac{3}{2}} B^{-\frac{1}{2}}\right)=\frac{1}{2}\left(\frac{2}{3}+\frac{\sqrt{5}}{3}\right)<w\left(A \square_{-\frac{1}{2}} B\right)=\frac{\sqrt{5}}{3}$. Hence

$$
w\left(A দ_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right]
$$

does not always hold.

## Geometric mean of negative power

## counterexample

For the case of $\beta=-1$

$$
A \natural_{-1} B=A B^{-1} A=\left(\begin{array}{ll}
\frac{5}{9} & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
A^{2} B^{-1}=\left(\begin{array}{cc}
\frac{5}{9} & -\frac{4}{9} \\
0 & 0
\end{array}\right)
$$

Then we have $w\left(A^{2} B^{-1}\right)=\frac{1}{2}\left(\frac{5}{9}+\frac{\sqrt{41}}{9}\right)>\frac{5}{9}=w\left(A \natural_{-1} B\right)$. Hence

$$
w\left(A \natural_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for } \beta=-1
$$

hold.

## Contents

## (1) Motivation

## (2) Norm inequality for geometric means of negative power

(3) Numerical radius inequality for geometric means

## Numerical radius inequality for geometric means

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A দ_{\beta} B\right) \quad \text { for all } \beta \in[-1,0)
$$

and

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for all } \beta \in \mathbb{R}
$$

We show the following numerical radius inequalities releted to the geometric means of negative power:

## Numerical radius inequality for geometric means

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A দ_{\beta} B\right) \quad \text { for all } \beta \in[-1,0)
$$

and

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \quad \text { for all } \beta \in \mathbb{R}
$$

We show the following numerical radius inequalities releted to the geometric means of negative power:

## Theorem 2

Let $A$ and $B$ be positive definite matrices. Then

$$
w\left(A \natural_{\beta} B\right) \leq w\left(A^{2(1-\beta) q} B^{2 \beta q}\right)^{\frac{1}{2 q}} \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] \text { and } q \geq 1
$$

## Numerical radius inequality for geometric means

## Proof of Theorem 2

We recall the Araki-Cordes inequality for the matrix norm: If $A, B \geq 0$, then

$$
\left\|B^{p} A^{p} B^{p}\right\| \leq\|B A B\|^{p} \quad \text { for all } 0<p \leq 1
$$

For $\beta \in\left[-1,-\frac{1}{2}\right]$, we have $\left\|A দ_{\beta} B\right\| \leq\left\|A^{q} দ_{\beta} B^{q}\right\|^{\frac{1}{q}}$ for all $q \geq 1$ and this implies

$$
\begin{aligned}
w\left(A দ_{\beta} B\right) & =\left\|A দ_{\beta} B\right\| \leq\left\|A^{q} দ_{\beta} B^{q}\right\|^{\frac{1}{q}} \quad \text { for all } q \geq 1 \\
& =\left\|A^{\frac{q}{2}}\left(A^{-\frac{q}{2}} B^{q} A^{-\frac{q}{2}}\right)^{\beta} A^{\frac{q}{2}}\right\|^{\frac{1}{q}} \\
& =\left\|A^{\frac{q}{2}}\left(A^{\frac{q}{2}} B^{-q} A^{\frac{q}{2}}\right)^{-\beta} A^{\frac{q}{2}}\right\|^{\frac{1}{q}} \\
& \leq\left\|A^{\frac{-(1-\beta) q}{2 \beta}} B^{-q} A^{\frac{-(1-\beta) q}{2 \beta}}\right\|^{\frac{-\beta}{q}} \quad \text { for all } \frac{1}{2} \leq-\beta \leq 1
\end{aligned}
$$

## Numerical radius inequality for geometric means

## Proof of Theorem 2

$$
\begin{aligned}
w\left(A \square_{\beta} B\right) & \leq\left\|A^{\frac{-(1-\beta) q}{2 \beta}} B^{-q} A^{\frac{-(1-\beta) q}{2 \beta}}\right\|^{\frac{-\beta}{q}} \quad \text { for all } \frac{1}{2} \leq-\beta \leq 1 \\
& \leq\left\|A^{(1-\beta) q} B^{2 \beta q} A^{(1-\beta) q}\right\|^{\frac{1}{2 q}} \quad \text { for all } \frac{1}{2} \leq-\frac{1}{2 \beta} \leq 1 \\
& =r\left(A^{(1-\beta) q} B^{2 \beta q} A^{(1-\beta) q}\right)^{\frac{1}{2 q}} \\
& =r\left(A^{2(1-\beta) q} B^{2 \beta q}\right)^{\frac{1}{2 q}} \\
& \leq w\left(A^{2(1-\beta) q} B^{2 \beta q}\right)^{\frac{1}{2 q}}
\end{aligned}
$$

and so we have the desired inequality.

## Numerical radius inequality for geometric means

## Corollary 3

Let $A$ and $B$ be positive definite matrices. Then

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right) \leq w\left(A দ_{\beta} B\right) \leq w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}
$$

for all $\beta \in\left[-1,-\frac{1}{2}\right]$.
(Proof) If we put $q=1$ in Theorem 2, then we have this corollary.

## Numerical radius inequality for geometric means

Finally, we consider the relation between $w\left(A^{1-\beta} B^{\beta}\right)$ and $w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}$. To show inequalities related to $w\left(A^{1-\beta} B^{\beta}\right)$ for $\beta \in[-1,0)$, we need the following Cordes type inequality related to the numerical radius:

## Lemma 4

Let $A$ and $B$ be positive definite matrices. Then

$$
w(A B) \leq w\left(A^{\frac{2}{p}} B^{\frac{2}{p}}\right)^{\frac{p}{2}} \quad \text { for all } p \in(0,1]
$$

## Numerical radius inequality for geometric means

By Lemma 4, we have a series of the numerical radius inequalities related to the geometric means of negative power:

## Theorem 5

Let $A$ and $B$ be positive definite matrices. Then

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}
$$

for all $\beta \in \mathbb{R}$.

## Numerical radius inequality for geometric means

## Proof of Theorem 5

It follows that

$$
w\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right)=r\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right)=r\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A^{1-\beta} B^{\beta}\right)
$$

and by Lemma 4

$$
w\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}
$$

for all $\beta \in \mathbb{R}$.

## Numerical radius inequality for geometric means

## Comparison between $w\left(A \natural_{\beta} B\right)$ and $w\left(A^{1-\beta} B^{\beta}\right)$

Let $A$ and $B$ be positive definite matrices. Then

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right) \leq w\left(A \natural_{\beta} B\right) \leq w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}
$$

for all $\beta \in\left[-1,-\frac{1}{2}\right]$.

$$
w\left(A \diamond_{\beta} B\right) \leq w\left(A^{\frac{1-\beta}{2}} B^{\beta} A^{\frac{1-\beta}{2}}\right) \leq w\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A^{2(1-\beta)} B^{2 \beta}\right)^{\frac{1}{2}}
$$

for all $\beta \in \mathbb{R}$.

## Numerical radius inequality for geometric means

## Evaluation of $w\left(A দ_{\beta} B\right)$ and $w\left(A^{1-\beta} B^{\beta}\right)$

Let $A$ and $B$ be positive definite matrices with $0<m \leq A, B \leq M$ for some scalars $m<M$. Put $h=\frac{M}{m}$. If $-1 \leq \beta \leq-\frac{1}{2}$, then

$$
K\left(h^{2},-\beta\right) K(h,-2 \beta)^{-\frac{1}{2}} w\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A দ_{\beta} B\right) \leq \frac{M+m}{2 \sqrt{M m}} w\left(A^{1-\beta} B^{\beta}\right)
$$

where the generalized Kantorovich constant $K(h, p)$ is defined by

$$
K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p}
$$

for any real number $p \in \mathbb{R}$.

## Numerical radius inequality for geometric means

## Evaluation of $w\left(A \bigsqcup_{\beta} B\right)$ and $w\left(A^{1-\beta} B^{\beta}\right)$

Let $A$ and $B$ be positive definite matrices with $0<m \leq A, B \leq M$ for some scalars $m<M$. Put $h=\frac{M}{m}$. If $-\frac{1}{2} \leq \beta<0$, then

$$
K\left(h^{2},-\beta\right) w\left(A^{1-\beta} B^{\beta}\right) \leq w\left(A দ_{\beta} B\right) \leq K(h,-\beta)^{-1} w\left(A^{1-\beta} B^{\beta}\right)
$$

where $K(h, p)$ is the generalized Kantorovich constant.

## References

[1 ] J.I. Fujii and Y. Seo, Tsallis relative operator entropy with negative paramaeters, Adv. Oper. Theory, 1 (2016), no.2, 219-236.
[2 ] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
[3 ] M. Fujii and R. Nakamoto, A geometric mean in the Furuta inequality, Sci. Math. Japon., 55 (2002), 615-621.
[4 ] J.I. Fujii and Y. Seo, The relative operator entropy and the Karcher mean, Linear Algebra Appl., 542 (2018), 4-34.

## References

[5 ] J.I. Fujii and Y. Seo, Tsallis relative operator entropy with negative parameters, Adv. Oper. Theory, 1 (2016), 219-236.
[6 ] Y. Seo, Matrix trace inequalities on Tsallis relative entropy of negative order, to appear in Journal of Mathematical Analysis and Applications.
[7 ] M. Kian and Y. Seo, Norm inequalities related to the matrix geometric mean of negative power, Scientiae Mathematicae Japonicae ( in Editione Electronica ) e-2018 Whole Number 31 2018-7.
[8 ] R. Nakamoto and Y. Seo, A complement of the Ando-Hiai inequality and norm inequalities for the geometric mean, Nihonkai Math. J., 18(2007), 43-50.
[9] Y. Seo, Numerical radius inequalities related to the geometric means of negative power, to appear in Operators and Matices.

## A. N. Kolmogorov

## A. N. Kolmogorov's word

Finally, we present the following Professor A. N. Kolmogorov's word. He said in a lecture that

Behind every theorem lies an inequality.

Thank you very much for your attention !!

