June 21－24，2019，Toyo University

## Preservers of numerical radius on Lie products of self－adjoint operators

## Jinchuan Hou

（Joint work with Qingsen Xu）

Taiyuan University of Technology
houjinchuan＠tyut．edu．cn
15th Workshop on Numerical Ranges and Numerical Radii

## Outline

－Introduction

## Introduction

Jordan semi－triple product Lie product
－General results
－Applications to numerical radius and numerical range，．．．

## 1 Introduction

－We talk about the question of characterizing the general preservers of numerical radius and numerical range on Lie product of self－adjoint operators，but we first work on a more general setting．
－As we know，for some given subset $\mathcal{T}$ of matrices or oper－ ators，there are interesting results showing that $\phi: \mathcal{T} \rightarrow \mathcal{T}$ will have nice structure if

$$
\begin{equation*}
F(\phi(A) \circ \phi(B))=F(A \circ B)(A, B \in \mathcal{T}) \tag{1.1}
\end{equation*}
$$

for some suitable functional $F$ and some product $\circ$ of op－ erators（see［CH］，［CLS］，［LPS］，［Se］and the references therein）．

## Introduction

［CH］J．－L．Cui，J．－C．Hou，Maps preserving functional values of operator prod－

## Introduction

 ucts invariant，Linear Algebra Appl． 428 （2008），1649－1663． ［CLS］J．－T．Chan，C．－K．Li，N．－S．Sze，Mappings on matrices：invariance of functional values of matrix products，J．Austral．Math．Soc． 81 （2006）165－184． ［LPS］C．－K．Li，E．Poon，N．－S．Sze，Preservers for norms of Lie product，Oper． Matrices 3 （2009），187－203．［Se］P．Šemrl，Maps on matrix spaces，Linear Algebra Appl． 413 （2006），364－ 393.
－For example，the paper［Dob］gives a characterization of the maps $\phi$ satisfying（1．1）when the operation $\circ$ is the Jordan semi－triple product（i．e．，$A \circ B=A B A$ ）and $\mathcal{T}$ is a subset of the algebra $\mathcal{M}_{n}$ of all $n \times n$ complex matri－ ces which contains all idempotent and nilpotent rank one matrices，and $F: \mathcal{M}_{n} \rightarrow[0, \infty)$ is a unitary similarity invariant function satisfying the following properties：
（i）$F\left(U A U^{*}\right)=F(A)$ for every $A \in \mathcal{M}_{n}$ and unitary $U \in \mathcal{M}_{n}$ ；
（ii）$F(\lambda A)=|\lambda| F(A)$ for every $\lambda \in \mathbb{C}$ and $A \in \mathcal{M}_{n}$ ；
（iii）$F(A)=0 \Leftrightarrow A=0$ ．
－This general result is then applied to characterize the maps that preserve the norm，the maps that preserve the Schat－ ten $p$－norm and the maps preserving the numerical radius of Jordan semi－triple products of matrices．
［Dob］G．Dobovišek，B．Kuzma，G．Lešnjak，C．－K．Li and T．Petek，Map－ pings that preserve pairs of operators with zero triple Jordan product，Lin－ ear Algebra Appl． 426 （2007），255－279．

## Introduction

－However，the pseudo spectral radius does not have the properties（ii）and（iii）．
－More generally，the paper［CLP］introduces a radial uni－ tary similarity function $F: \mathcal{M}_{n} \rightarrow[0, \infty)$ ，that is，$F$ has the property
（I）$F\left(\lambda U A U^{*}\right)=F(A)$ for every unimodular $\lambda \in \mathbb{C}$ ， $A \in \mathcal{M}_{n}$ and unitary $U \in \mathcal{M}_{n}$ ．
In addition，
（II）$F(A)=0 \Leftrightarrow A=0$ ；
（III）For every rank one nilpotent $R \in \mathcal{M}_{n}$ ，the map $t \mapsto$ $F(t R)$ is strictly increasing on $[0, \infty)$ ．

第 7 页 24
返 回
［CLP］J．－L．Cui，C．－K．Li，Y．－T．Poon，Preservers of unitary similarity func－ 180.
－With the continuous functional $F$ satisfying（I）－（III），a characterization of the maps on $\mathcal{M}_{n}$ satisfying（1．1）when the operation $\circ$ is the Lie product $(A \circ B=[A, B]=$ $A B-B A$ ）is obtained．
－Then，as applications，general forms of the maps that pre－ serve the pseudo spectral radius and the maps that pre－ serve the pseudo spectrum are presented．
－Let $\mathcal{B}(H)$ stand for the algebra of all bounded linear op－

访问主页
标题页
$44 \quad>$
$4 \quad \downarrow$
第 8 页 24
返 回
全屏显示
关 闭
退 出 Appl， 542 （2018），484－500．
－For a complex Hilbert space $H$ with $\operatorname{dim} H \geq 3$ ，denote by $\mathcal{B}_{s}(H)$ the set of all bounded self－adjoint operators on $H$ ．
［XuHou］Qingsen Xu，Jinchuan Hou，Preservers of radial unitary similar－ ity functions on Jordan semi－triple products of self－adjoint operators，Bull． Malays．Math．Sci．Soc．，https：／／doi．org／10．1007／s40840－018－06104．
－In［XuHou］we consider the following radial unitary sim－ ilarity invariant functionals

$$
F: \mathcal{B}(H) \rightarrow[d, \infty]
$$

with $d \geq 0$ which have the following properties $\mathrm{P}_{1}-\mathrm{P}_{4}$ ：
－$\left(\mathrm{P}_{1}\right) F\left(\lambda U A U^{*}\right)=F(A)$ for any scalar $\lambda$ with $|\lambda|=1$ ， $A \in \mathcal{B}(H)$ and unitary operator $U \in \mathcal{B}(H)$ ；
－$\left(\mathrm{P}_{2}\right) F(A)=d \Leftrightarrow A=0$ for $A \in \mathcal{B}(H)$ ；
－$\left(\mathrm{P}_{3}\right)$ For every rank one projection $P \in B(H)$ ，the map $t \mapsto F(t P)$ is strictly increasing on $[0, \infty)$ ；
－$\left(\mathrm{P}_{4}\right) F(A)<\infty$ for every rank one operator $A$ ．
－Note that allowing $F$ may take the value $+\infty$ at some op－ erators is more reasonable especially in the infinite dimen－ sional case．This enables us to cover also the Schatten $p$－norm $\|\cdot\|_{p}$ ．

## Introduction

Jordan semi－triple product Lie product
－We got the following general result for Jordan semi－triple product：
Theorem XH．Let $H$ be a complex Hilbert space with $\operatorname{dim} H \geq 3$ and let $F: \mathcal{B}(H) \rightarrow[d, \infty]$ be a functional satisfying $\mathrm{P}_{1}-\mathrm{P}_{4}$ ．If $\phi: \mathcal{B}_{s}(H) \rightarrow \mathcal{B}_{s}(H)$ is a surjective map such that

$$
F(\phi(A) \phi(B) \phi(A))=F(A B A) \quad \forall A, B \in \mathcal{B}_{s}(H)
$$

then there exists a unitary or conjugate unitary operator $U$ on $H$ and a functional $h: \mathcal{B}_{s}(H) \rightarrow\{-1,1\}$ such that

$$
\phi(T)=h(T) U T U^{*} \quad \forall T \in \mathcal{B}_{s}(H) .
$$

－Then it was applied to characterize the general preservers of numerical radius，pseudo－spectral radius，Schatten $p$－ norm．

## 2 General results for Lie product

－Now let us turn to the problem how to characterize the maps that preserve the value of some radial unitary sim－ ilarity function on Lie products of self－adjoint operators．
－Here we consider the following functional $F: \mathcal{B}(H) \rightarrow$ $[d, \infty]$ with $d \geq 0$ satisfying the following properties $\mathrm{P}_{1}^{\prime-}$ $\mathrm{P}_{4}^{\prime}$ ：
－$\left(\mathrm{P}_{1}^{\prime}\right) F\left(\lambda U A U^{*}\right)=F(A)$ for all scalar $\lambda$ with $|\lambda|=1$ and any $A, U \in \mathcal{B}(H)$ with $U$ unitary operator；
－$\left(\mathrm{P}_{2}^{\prime}\right)$ For any $A \in \mathcal{B}(H), F(A)=d \Leftrightarrow A=0$ ；
－$\left(\mathrm{P}_{3}^{\prime}\right)$ For every nonzero $R \in \mathcal{B}(H)$ with $\operatorname{rank} R \leq 2$ and $\operatorname{Tr}(R)=0$ ，the map $t \mapsto F(t R)$ on $[0, \infty)$ is strictly in－ creasing；
－$\left(\mathrm{P}_{4}^{\prime}\right) F(A)<\infty$ for every operator $A$ of rank $\leq 2$ ．

Introduction
－Denote by $\mathcal{D}_{s}(H)$ the set of all diagonalizable self－adjoint operators in $\mathcal{B}(H)$ ．

Lemma 2．1．Let $F: \mathcal{B}_{s}(H) \rightarrow[d, \infty]$ with $d \geq 0$ be a functional satisfying the properties $\mathrm{P}_{1}^{\prime}-\mathrm{P}_{4}^{\prime}$ ．For any $A \in \mathcal{D}_{s}(H)$ and $B \in \mathcal{B}_{s}(H)$ ，the following statements equivalent：
（1）For any $C \in \mathcal{B}_{s}(H), F(A C-C A)=d \Leftrightarrow F(B C-$ $C B)=d$ ．
（2）For any unit vector $x \in H, F(A x \otimes x-x \otimes x A)=$ $d \Leftrightarrow F(B x \otimes x-x \otimes x B)=d$ ．
（3）There exist $\mu \in\{-1,1\}$ and $\nu \in \mathbb{R}$ such that $B=$ $\mu A+\nu I$ ．

Introduction

Lemma 2．2．Let $F: i \mathcal{B}(H) \rightarrow[d, \infty]$ be a functional satis－ fying $\mathrm{P}_{1}^{\prime}-\mathrm{P}_{4}^{\prime}$ with $d \geq 0$ ．For an orthonormal basis $\left\{e_{k}\right\}_{k \in \Lambda}$ of $H$ and every $x=\sum_{k \in \Lambda} \xi_{k} e_{k} \in H$ ，define $\bar{x}=J x=$ $\sum_{k \in \Lambda} \bar{\xi}_{k} e_{k}$ ．Then，for any $B \in \mathcal{B}_{s}(H)$ ，we have

$$
F([B, \bar{x} \otimes \bar{x}])=F\left(\left[B^{\mathrm{t}}, x \otimes x\right]\right) .
$$

## Introduction

－The following is our general result．
Theorem 2．3．Let $H$ be a complex separable Hilbert Space of dimension $\geq 3$ ，and let $F: i \mathcal{B}_{s}(H) \rightarrow[d, \infty]$ with $d \geq 0$ be a functional satisfying the properties $\mathrm{P}_{1}^{\prime}-\mathrm{P}_{4}^{\prime}$ ． Suppose $\phi: \mathcal{B}_{s}(H) \rightarrow \mathcal{B}_{s}(H)$ is a surjective map satisfy－ ing
$F(\phi(A) \phi(B)-\phi(B) \phi(A))=F(A B-B A) \quad \forall A, B \in \mathcal{B}_{s}(H)$ ．
Then there exist a unitary or conjugate unitary opera－ tor $U$ on $H$ ，a sign function $h: \mathcal{D}_{s}(H) \rightarrow\{1,-1\}$ and a functional $g: \mathcal{D}_{s}(H) \rightarrow \mathbb{R}$ such that $\phi(A)=$ $h(A) U A U^{*}+g(A) I$ for all $A \in \mathcal{D}_{s}(H)$ ．

## Introduction

－Denote by $\mathbf{H}_{n}$ the space of all $n \times n$ Hermitian matrices． Particularly，we have

Corollary 2．4．Let $F: i \mathbf{H}_{n} \rightarrow[d, \infty]$ with $d \geq 0$ and $n \geq$ 3 be a functional satisfying the properties $\mathrm{P}_{1}^{\prime}-\mathrm{P}_{4}^{\prime}$ ．Suppose $\phi: \mathbf{H}_{n} \rightarrow \mathbf{H}_{n}$ is a surjective map satisfying
$F(\phi(A) \phi(B)-\phi(B) \phi(A))=F(A B-B A) \quad \forall A, B \in \mathcal{B}_{s}(H)$ ．
Then there exist a unitary matrix $U \in \mathcal{M}_{n}$ ，a sign function $h: \mathbf{H}_{n} \rightarrow\{1,-1\}$ and a functional $g: \mathbf{H}_{n} \rightarrow \mathbb{R}$ such that
（1）$\phi(T)=h(T) U T U^{*}+g(T) I$ for all $T \in \mathbf{H}_{n}$ ；
or
（2）$\phi(T)=h(T) U T^{\mathrm{t}} U^{*}+g(T) I$ for all $T \in \mathbf{H}_{n}$ ．

## 3 Applications：numerical radius，numer－ ical range，Schatten $p$－norm，pseudo spec－ tral radius，pseudo spectrum

－Now let us consider some applications of the general re－ sult Theorem 2．3．
－Let $\varepsilon$ be a small positive number．For an operator $A \in$ $\mathcal{B}(H)$ ，recall that the $\varepsilon$－pseudo spectrum of $A$ is the set

$$
\sigma_{\varepsilon}(A)=\left\{\mu \in \mathbb{C}:\left\|(A-\mu I)^{-1}\right\| \geq \varepsilon^{-1}\right\}
$$

with the convention that $\left\|(A-\mu I)^{-1}\right\|=\infty$ if $\mu \in \sigma(A)$ ， and the $\varepsilon$－pseudo spectral radius of $A$ is

$$
r_{\varepsilon}=\max \left\{|\mu|: \mu \in \sigma_{\varepsilon}(A)\right\} .
$$

troduction
Jordan semi－triple product Lie product

44
－Obviously，for any $\varepsilon>0$ ，we have $\sigma(A) \subseteq \sigma_{\varepsilon}(A)$ and $r(A) \leq r_{\varepsilon}(A)$ ，where $\sigma(A)$ and $r(A)$ are respectively the spectrum and the spectral radius of $A$ ．
－The pseudo spectrum and the pseudo spectral radius are useful in studying the stability of operators under pertur－ bations．The preserver problems concerning the pseudo spectrum and the pseudo spectral radius have been stud－ ied by many authors．

Theorem 3．1．Let $p \geq 1, \varepsilon>0$ and $H$ be a complex sep－ arable Hilbert space of dimension at least 3．Assume that $\Phi: \mathcal{B}_{s}(H) \rightarrow \mathcal{B}_{s}(H)$ is a surjective map．Then，the following conditions are equivalent．
（1）$w([\Phi(A), \Phi(B)])=w([A, B])$ for all $A, B \in \mathcal{B}_{s}(H)$ ．
（2）For some $1 \leq p<\infty,\|[\Phi(A), \Phi(B)]\|_{p}=\|[A, B]\|_{p}$ for all $A, B \in \mathcal{B}_{s}(H)$ ．
（3）$r_{\varepsilon}([\Phi(A), \Phi(B)])=r_{\varepsilon}([A, B])$ for all $A, B \in \mathcal{B}_{s}(H)$ ．
（4）There exist a unitary or conjugate unitary operator $U$ on $H$ ，a sign function $h: \mathcal{B}_{s}(H) \rightarrow\{1,-1\}$ and a functional $g: \mathcal{B}_{s}(H) \rightarrow \mathbb{R}$ such that either

$$
\Phi(T)=h(T) U T U^{*}+g(T) I
$$

for all $T \in \mathcal{B}_{s}(H)$ ．
－Set

$$
\mathfrak{S}=\left\{A \in \mathcal{B}_{s}(H): \sigma(A) \text { has at most two points }\right\} .
$$

－The following result gives a characterization of maps pre－ serving numerical range，preserving the pseudo spectrum of Lie product of self－adjoint operators．

Theorem 3．2．Let $\varepsilon>0$ ，H be a complex Hilbert space with $\operatorname{dim} H \geq 3$ and $\phi: \mathcal{B}_{s}(H) \rightarrow \mathcal{B}_{s}(H)$ a surjective map．Then the following statements are equivalent．
（1）$\phi$ satisfies
$W(\phi(A) \phi(B)-\phi(B) \phi(A))=W(A B-B A) \quad \forall A, B \in \mathcal{B}_{s}(H)$.
Jordan semi－triple product Lie product
（2）$\phi$ satisfies
$\sigma_{\varepsilon}(\phi(A) \phi(B)-\phi(B) \phi(A))=\sigma_{\varepsilon}(A B-B A) \quad \forall A, B \in \mathcal{B}_{s}(H)$.
（3）There exist a unitary operator on $H$ ，a functional $g$ ： $\mathcal{B}_{s}(H) \rightarrow \mathbb{R}$ ，a scalar $\eta \in\{-1,1\}$ and a subset $\Delta \subseteq \mathfrak{S}$ ， such that

$$
\phi(T)= \begin{cases}\eta U T U^{*}+g(T) I & \text { if } T \notin \Delta ; \\ -\eta U T U^{*}+g(T) I & \text { if } T \in \Delta\end{cases}
$$

－Question：
－We do not know if the similar results in this talk can still be established when $\operatorname{dim} H=\infty$ and $\mathcal{B}_{s}(H)$ is replaced by $\mathcal{B}(H)$ ．
－Particularly，is the following conjecture true？

## Introduction

Conjecture．Let $H$ be an infinite－dimensional complex Hilbert Space，and let $F: \mathcal{B}(H) \rightarrow[d, \infty]$ with $d \geq 0$ be a functional satisfying the properties $\mathrm{P}_{1}^{\prime}-\mathrm{P}_{4}^{\prime}$ ．Suppose $\phi: \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ is a surjective map satisfying

$$
F(\phi(A) \phi(B)-\phi(B) \phi(A))=F(A B-B A) \quad \forall A, B \in \mathcal{B}(H)
$$

Then there exist a unitary or conjugate unitary operator $U$ on $H$ ，a function $h: \mathcal{D}(H) \rightarrow \mathbb{T}$ and a functional $g: \mathcal{D}(H) \rightarrow$ $\mathbb{C}$ such that $\phi(A)=h(A) U A^{\#} U^{*}+g(A) I$ for all $A \in \mathcal{D}(H)$ ， where $A^{\#}=A$ or $A^{*}$ ．
－ $\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and $\mathcal{D}(H)$ is the set of all diago－ nalizable operators in $\mathcal{B}(H)$ ．

## Thank You for Your Attention！

访问主页标 题 页
$\square$

第 24 页 24

返 回

全屏显示

关 闭

