The diameter and width of the numerical range

Mao-Ting Chien
Soochow University, Taiwan

Joint work with Hiroshi Nakazato and Jie Meng
WONRA, Toyo University, June 21-24, 2019

Let A be an $n \times n$ complex matrix. The numerical range of A is defined and denoted by

$$
W(A)=\left\{x^{*} A x ; x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

The homogeneous polynomial:

$$
\begin{aligned}
& \qquad F_{A}(t, x, y)=\operatorname{det}\left(t I_{n}+x \Re(A)+y \Im(A)\right), \\
& \text { and } \Re(A)=\left(A+A^{*}\right) / 2, \Im(A)=\left(A-A^{*}\right) /(2 i) \text {. }
\end{aligned}
$$

Gau, Helton, Spitkovsky, Vinnikov, Zyczkowski, ...

The diameter $\operatorname{diam}(W(A))$ of $W(A)$ is defined to be the largest distance of two parallel lines tangent to its boundary.

The width width $(W(A))$ the smallest distance of two parallel lines tangent to its boundary.

The boundary curve of $W(A)$ is called a curve of constant width if $\operatorname{diam}(W(A))=\operatorname{width}(W(A))$.

Our work

- Provide an algorithm for computing the diameter and width of the numerical range.
- Formulate the diameter and width of the numerical range of some unitary bordering matrices.
- Determine the condition for the boundary of the numerical range of certain Toeplitz matrices to be a curve of constant width.

An algorithm for computing the diameter and width

Let A be an $n \times n$ matrix. For $0 \leq \theta \leq 2 \pi$, we consider the
Cartesian decomposition

$$
e^{-i \theta} A=\Re\left(e^{-i \theta} A\right)+i \Im\left(e^{-i \theta} A\right)
$$

Denote $H_{A}(\theta)=\Re\left(e^{-i \theta} A\right)$, and its eigenvalues

$$
\lambda_{1}(\theta) \geq \lambda_{2}(\theta) \geq \ldots \geq \lambda_{n}(\theta) .
$$

$$
e^{-i \theta} A=(\cos \theta-i \sin \theta)(\Re(A)+i \Im(A))
$$

it follows that

$$
H_{A}(\theta)=\cos \theta \Re(A)+\sin \theta \Im(A) .
$$

Hence, the characteristic polynomial of $H_{A}(\theta)$ is exactly equal to

$$
F_{A}(t,-\cos \theta,-\sin \theta)=\operatorname{det}(t l-\cos \theta \Re(A)-\sin \theta \Im(A)) .
$$

Theorem 1 Let A be an $n \times n$ matrix. Then

$$
\begin{equation*}
\operatorname{diam}(W(A))=\max \left\{\lambda_{1}(\theta)-\lambda_{n}(\theta): 0 \leq \theta \leq 2 \pi\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{width}(W(A))=\min \left\{\lambda_{1}(\theta)-\lambda_{n}(\theta): 0 \leq \theta \leq 2 \pi\right\} \tag{2.2}
\end{equation*}
$$

where $\lambda_{1}(\theta) \geq \lambda_{2}(\theta) \geq \cdots \geq \lambda_{n}(\theta)$ are eigenvalues of $H_{A}(\theta)$.

The resultant of two polynomials $f(Y), g(Y)$ due to Sylvester:
Let

$$
\begin{gathered}
f(Y)=a_{m} Y^{m}+a_{m-1} Y^{m-1}+\cdots+a_{1} Y+a_{0} \\
g(Y)=b_{n} Y^{n}+b_{n-1} Y^{n-1}+\cdots+b_{1} Y+b_{0}
\end{gathered}
$$

be polynomials in Y with non-zero leading coefficients a_{m}, b_{n}, and the coefficients a_{j}, b_{k} are functions in other variables.

The resultant of $f(Y)$ and $g(Y)$ is defined as the determinant of the $(n+m) \times(n+m)$-matrix:

$$
R(f, g)=\left(\begin{array}{ccccccc}
a_{m} & a_{m-1} & a_{m-2} & \ldots & 0 & 0 & 0 \\
0 & a_{m} & a_{m-1} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a_{1} & a_{0} & 0 \\
0 & 0 & 0 & \ldots & a_{2} & a_{1} & a_{0} \\
b_{n} & b_{n-1} & b_{n-2} & \ldots & 0 & 0 & 0 \\
0 & b_{n} & b_{n-1} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & b_{1} & b_{0} & 0 \\
0 & 0 & 0 & \ldots & b_{2} & b_{1} & b_{0}
\end{array}\right) .
$$

It is well known f and g have a common zero iff $\operatorname{det}(R(f, g))=0$.

Obviously, the function $\lambda_{1}(\theta)-\lambda_{n}(\theta)$ is a zero of the polynomial

$$
\prod_{1 \leq j \neq k \leq n}\left(Z-\left(\lambda_{j}(\theta)-\lambda_{k}(\theta)\right)\right) .
$$

This means that once we obtained the above polynomial, the diameter $\operatorname{diam}(W(A))$, according to Theorem 1, can be derived.

Consider the polynomial

$$
p(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n-1} t+a_{n}=\prod_{1 \leq i \leq n}\left(t-\lambda_{i}\right) .
$$

Assume $R(Z)$ is the resultant of $p(Y+Z)$ and $p(Y)$ with respect to Y. Then $R(Z) / Z^{n}$ is the required polynomial:

$$
\prod_{1 \leq j \neq k \leq n}\left(Z-\left(\lambda_{j}-\lambda_{k}\right)\right)
$$

Accordingly, let $R(Z,-\cos \theta,-\sin \theta)$ be the resultant of the polynomials $F_{A}(Y,-\cos \theta,-\sin \theta)$ and $F_{A}(Y+Z,-\cos \theta,-\sin \theta)$ with respect to Y. Then $R(Z,-\cos \theta,-\sin \theta) / Z^{n}$ is

$$
K(Z,-\cos \theta,-\sin \theta)=\prod_{1 \leq j \neq k \leq n}\left(Z-\left(\lambda_{j}(\theta)-\lambda_{k}(\theta)\right)\right) .
$$

Theorem 2 Let A be an $n \times n$ matrix. Let $R(Z, x, y)$ be the resultant of $F_{A}(Y, x, y)$ and $F_{A}(Y+Z, x, y)$ with respect to Y, and $K_{A}(Z, x, y)=R(Z, x, y) / Z^{n}$. Then

$$
\begin{aligned}
& \operatorname{diam}(W(A))=\max \left\{Z \in \mathbb{R}: K_{A}(Z,-\cos \theta,-\sin \theta)=0,0 \leq \theta \leq 2 \pi\right\}, \\
& \quad \operatorname{width}(W(A))=\min _{0 \leq \theta \leq 2 \pi} \max \left\{Z \in \mathbb{R}: K_{A}(Z,-\cos \theta,-\sin \theta)=0\right\}
\end{aligned}
$$

Changing the variable $s=\tan (\theta / 2)$,

$$
\begin{gathered}
\operatorname{diam}(W(A))=\sup \left\{Z \in \mathbb{R}: K_{A}\left(Z,-\frac{1-s^{2}}{1+s^{2}},-\frac{2 s}{1+s^{2}}\right)=0,-\infty<s<\infty\right\}, \\
\operatorname{width}(W(A))=\inf \left\{\sup \left\{Z \in \mathbb{R}: K_{A}\left(Z,-\frac{1-s^{2}}{1+s^{2}},-\frac{2 s}{1+s^{2}}\right)=0\right\},\right. \\
-\infty<s<\infty\} .
\end{gathered}
$$

Example 1

Consider the matrix

$$
A=\left(\begin{array}{ccc}
23 & 1+i & 6-5 i \\
4+5 i & 6 i & 7 \\
2+i & -3+5 i & -9 i
\end{array}\right) .
$$

Then the polynomial $K_{A}(Z, x, y)$ becomes
$K_{A}(Z, x, y)=16 z^{6}-16\left(1331 x^{2}+378 x y+645 y^{2}\right) Z^{4}+4\left(1331 x^{2}+378 x y+645 y^{2}\right)^{2} z^{2}$
$-198638261 x^{6}-785100590 x^{5} y-1971769127 x^{4} y^{2}-503512476 x^{3} y^{3}-238036399 x^{2} y^{4}$
$-88713198 x y^{5}-77494717 y^{6}$.
The resultant of $K_{0}(Z, s)$ and its derivative $K_{0}^{\prime}(Z, s)$ with respect to s contains the following polynomial factor:

$$
L(Z)=1368783469011353600 Z^{24}+\cdots
$$

The maximal real root of $L(Z)=0$ is approximately 29.6976 which is diam $(W(A))$. The minimal real root is approximately 19.8313 which is width $(W(A))$.

Formulate diameter and width of unitary bordering matrices

An $n \times n$ complex matrix A is called a unitary bordering matrix if A is a contraction, that is, $\left\langle A^{*} A \xi, \xi\right\rangle \leq\langle\xi, \xi\rangle$ for $\xi \in \mathbb{C}^{n}$, $\operatorname{rank}\left(I_{n}-A^{*} A\right)=1$
and the modulus of any eigenvalue of A is strictly less than 1 .
Gau-Wu(1998), Mirman(1998):
The entries of a standard form of a unitary bordering matrix $A=\left(a_{i j}\right)$ in the upper triangular form, up to unitary equivalence, are determined by its eigenvalues $a_{1}, a_{2}, \ldots, a_{n}$ in the following way

$$
a_{i j}= \begin{cases}a_{i} & \text { if } i=j \\ \left(\prod_{k=i+1}^{j-1}\left(-\overline{a_{k}}\right)\right) \sqrt{\left(1-\left|a_{i}\right|^{2}\right)\left(1-\left|a_{j}\right|^{2}\right)} & \text { if } i<j \\ 0 & \text { if } i>j\end{cases}
$$

For simplicity, we consider an $n \times n$ unitary bordering matrix with eigenvalues

$$
\left\{a \exp \left(i \frac{2 k \pi}{n}\right): k=0,1,2, \ldots, n-1\right\}
$$

for $0<a<1$.
The standard form of such an $n \times n$ unitary bordering matrix A is denoted by $A_{n}(a)$.

By the resultant formulae of Theorem 2, we compute that
Theorem 3 Let $A_{n}(a)$ be the standard unitary bordering matrix as defined above. Then,

1. For $n=2, \operatorname{diam}\left(W\left(A_{2}(a)\right)\right)=1+a^{2}$ and $\operatorname{width}\left(W\left(A_{2}(a)\right)\right)=1-a^{2}$,
2. For $n=3, \operatorname{diam}\left(W\left(A_{3}(a)\right)\right)=\left(2+a^{6}\right)^{1 / 2}$ and $\operatorname{width}\left(W\left(A_{3}(a)\right)\right)=\left(2+\left(a^{6} / 4\right)\right)^{1 / 2}$,
3. For $n=4$, $\operatorname{diam}\left(W\left(A_{4}(a)\right)\right)=\frac{1}{\sqrt{2}} \sqrt{a^{8}+3+\sqrt{a^{16}+2 a^{8}+8 a^{4}+5}}$ and $\operatorname{width}\left(W\left(A_{4}(a)\right)\right)=\frac{1}{\sqrt{2}} \sqrt{a^{8}+3+\sqrt{a^{16}+2 a^{8}-8 a^{4}+5}}$.

Curve of constant width for certain Toeplitz matrices

Reuleaux triangle:

Reuleaux triangle:curve of constant width
Conjecture:
If C is a curve of constant width and it is the boundary of the numerical range of a matrix, then C is a circle or a single point.

Denote $T\left(\beta_{1}, \ldots, \beta_{n-1}\right)$ the $n \times n$ nilpotent Toeplitz matrix:

$$
\left(\begin{array}{ccccccc}
0 & \beta_{1} & \beta_{2} & \beta_{3} & \ldots & \beta_{n-2} & \beta_{n-1} \\
0 & 0 & \beta_{1} & \beta_{2} & \ldots & \beta_{n-3} & \beta_{n-2} \\
0 & 0 & 0 & \beta_{1} & \ldots & \beta_{n-4} & \beta_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & \beta_{1} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

If $n=2 m$ is even, we denote

$$
A\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m-1}, \beta_{m}\right)=T\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m-1}, \beta_{m}, \overline{\beta_{m-1}}, \ldots, \overline{\beta_{2}}, \overline{\beta_{1}}\right)
$$

If $n=2 m-1$ is odd,

$$
A\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m-1}\right)=T\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m-1}, \overline{\beta_{m-1}}, \ldots, \overline{\beta_{2}}, \overline{\beta_{1}}\right)
$$

C-N

Theorem 4 (1) If $n=2 m-1$ and $B=A\left(\beta_{1}, \ldots, \beta_{m-1}\right)$, then the eigenvalues $\rho_{k}(\theta)$ of the Hermitian matrix $H_{B}(\theta)$ are given by

$$
\rho_{k}(\theta)=(-1)^{k} \Re\left(\sum_{j=1}^{m-1} \beta_{m-j} \exp \left(-i\left(\frac{(2 j-1) \theta}{n}+\frac{(2 j-1) k \pi}{n}\right)\right)\right) .
$$

(2) If $n=2 m$ and $B=A\left(\beta_{1}, \ldots, \beta_{m}\right)$, then the eigenvalues $\rho_{k}(\theta)$ of the Hermitian matrix $H_{B}(\theta)$ are given by

$$
\rho_{k}(\theta)=(-1)^{k} \frac{\Re\left(\beta_{m}\right)}{2}+(-1)^{k} \Re\left(\sum_{j=1}^{m-1} \beta_{m-j} \exp \left(-i\left(\frac{2 j \theta}{n}+\frac{2 j k \pi}{n}\right)\right)\right),
$$

$k=0,1,2, \ldots, n-1$.

Theorem 5 Let B be an $n \times n$ nilpotent Toeplitz matrix $A\left(\beta_{1}, \ldots, \beta_{m-1}\right)\left(\right.$ resp. $\left.A\left(\beta_{1}, \ldots, \beta_{m}\right)\right)$ for $n=2 m-1$ (resp. $n=2 m)$. If $\partial W(B)$ is a curve of constant width then $W(B)=\{0\}$ if $n=2 m-1$, and $W(B)=\{z \in \mathbb{C}:|z| \leq r\}$ for some $r \geq 0$ if $n=2 m$.

Theorem 6 Let B be the nilpotent Toeplitz matrix $A\left(\beta, \ldots, \beta_{m-1}\right)$ or $A\left(\beta, \ldots, \beta_{m}\right)$ for $n=2 m-1$ or $n=2 m$. If $p(\theta)=\rho_{0}(\theta), k=0$ in Theorem 4, then the boundary generating curve of $W(B)$ is given by

$$
\begin{aligned}
& \Re(z(\theta))=p(\theta) \cos \theta-p^{\prime}(\theta) \sin \theta \\
& \Im(z(\theta))=p(\theta) \sin \theta+p^{\prime}(\theta) \cos \theta
\end{aligned}
$$

$0 \leq \theta \leq 2 \pi$.

We compare the boundary generating curves of $W(A(3,3 / 5))$ and the curve of constant width by Rabinowitz curve.

Boundary generating curve of $W(A(3,3 / 5)): p(\theta)$ in Theorem 6 .
Rabinowitz curve: $p(\theta)=\frac{3}{25} \cos ^{2}\left(\frac{3 \theta}{2}\right)+\frac{3261}{5000}$.

$W(A(3,3 / 5)) \quad$ Rabinowitz curve.

Thank you

