Numerical ranges, operator systems, and quantum channels

Chi-Kwong Li Department of Mathematics, College of William and Mary, Institute for Quantum Computing, U. of Waterloo

Chi-Kwong Li, William & Mary / IQC

 Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If *H* has dimension *n*, we identify B(H) with M_n , the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^* x$.

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y^{*}x.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{ \langle Tx, x \rangle : x \in B(H), \langle x, x \rangle = 1 \}.$$

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y*x.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{ \langle Tx, x \rangle : x \in B(H), \langle x, x \rangle = 1 \}.$$

• If
$$T = \text{diag}(0, 1)$$
, then $W(T) = [0, 1]$.

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y*x.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{ \langle Tx, x \rangle : x \in B(H), \langle x, x \rangle = 1 \}.$$

• If
$$T = \text{diag}(0, 1)$$
, then $W(T) = [0, 1]$.
• If $T = \text{diag}(a_1, a_2, a_3)$, then $W(T) = \text{conv}\{a_1, a_2, a_3\}$.

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n, the algebra of n × n matrices with inner product ⟨x, y⟩ = y*x.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{ \langle Tx, x \rangle : x \in B(H), \langle x, x \rangle = 1 \}.$$

• We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.
- Equivalently, there is $X : H \to K$ such that

 $X^*X = I_H$ and $X^*AX = T$.

• We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.

• Equivalently, there is $X : H \to K$ such that

$$X^*X = I_H \quad \text{and} \quad X^*AX = T.$$
• If $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.

• We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.

• Equivalently, there is $X : H \to K$ such that

$$X^*X = I_H \quad \text{and} \quad X^*AX = T.$$
• If $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.

• The converse may not hold. E.g., $T = 0_3 \in M_3$ and $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

• We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.

• Equivalently, there is $X : H \to K$ such that

$$X^*X = I_H \quad \text{and} \quad X^*AX = T.$$
• If $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.

- The converse may not hold. E.g., $T = 0_3 \in M_3$ and $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.
- Note that W(A) = W(I ⊗ A). There are results showing that
 W(T) ⊆ W(A) ensures that T ∈ B(H) has a dilation of the form I ⊗ A.

ヘロア 人間 アメヨア 人間 アー

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the following.

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

 (Mirman, 1968) A ∈ M₃ is normal with eigenvalues a₁, a₂, a₃.

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

 (Mirman, 1968) A ∈ M₃ is normal with eigenvalues a₁, a₂, a₃.

• (Ando, 1973; Averson 1972) $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

臣

Chi-Kwong Li, William & Mary / IQC

臣

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

臣

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
 $W(T) = W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
 $W(T) = W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

臣

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
 $W(T) = W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

臣

• Let
$$A = \operatorname{diag}(1, i, -1, -i)$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
 $W(T) = W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$
But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $L \otimes$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

• Let
$$A = \operatorname{diag}(1, i, -1, -i)$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

 $W(T) = \{\mu \in \mathbb{C} : |\mu| \leq 1/\sqrt{2}\} \subseteq \operatorname{conv} \{1, i, -1, -i\} = W(A).$

イロト イポト イヨト イヨト 二日

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
 $W(T) = W(A) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$
But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

• Let
$$A = \operatorname{diag}(1, i, -1, -i)$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

$$W(T) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\} \subseteq \operatorname{conv} \{1, i, -1, -i\} = W(A).$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

臣

• A map $\Phi: B(H) \to B(K)$ is positive if $\Phi(T)$ is positive whenever T is.

イロト イヨト イヨト イヨト

3

- A map $\Phi: B(H) \to B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}$, Φ is *k*-positive if

 $(I_k \otimes \Phi)(T_{ij}) = (\Phi(T_{ij})) \in M_k(B(K))$ is positive

イロト イポト イヨト イヨト 二日

whenever $(T_{ij}) \in M_k(B(H))$ is positive.

- A map $\Phi: B(H) \to B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}$, Φ is *k*-positive if

 $(I_k \otimes \Phi)(T_{ij}) = (\Phi(T_{ij})) \in M_k(B(K))$ is positive

whenever $(T_{ij}) \in M_k(B(H))$ is positive.

• If Φ is *k*-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_n$. Consider the linear map

$$\phi(\mu_0 I + \mu_1 A + \mu_2 A^*) = \mu_0 I + \mu_1 T + \mu_2 T^*$$

for any $\mu_0, \mu_1, \mu_2 \in \mathbb{C}$.

- A map $\Phi: B(H) \to B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}$, Φ is *k*-positive if

 $(I_k \otimes \Phi)(T_{ij}) = (\Phi(T_{ij})) \in M_k(B(K))$ is positive

whenever $(T_{ij}) \in M_k(B(H))$ is positive.

• If Φ is *k*-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_n$. Consider the linear map

$$\phi(\mu_0 I + \mu_1 A + \mu_2 A^*) = \mu_0 I + \mu_1 T + \mu_2 T^*$$

for any $\mu_0, \mu_1, \mu_2 \in \mathbb{C}$.

• The map ϕ is a positive linear map, i.e., ϕ sends positive semidfinite operators to positive operators, if and only if $W(T) \subseteq W(A)$.

- A map $\Phi: B(H) \to B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}$, Φ is *k*-positive if

 $(I_k \otimes \Phi)(T_{ij}) = (\Phi(T_{ij})) \in M_k(B(K))$ is positive

whenever $(T_{ij}) \in M_k(B(H))$ is positive.

• If Φ is *k*-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_n$. Consider the linear map

$$\phi(\mu_0 I + \mu_1 A + \mu_2 A^*) = \mu_0 I + \mu_1 T + \mu_2 T^*$$

for any $\mu_0, \mu_1, \mu_2 \in \mathbb{C}$.

- The map ϕ is a positive linear map, i.e., ϕ sends positive semidfinite operators to positive operators, if and only if $W(T) \subseteq W(A)$.
- The map \u03c6 is completely positive, i.e., I_m ⊗ \u03c6 send positive operators to positive operators for all positive integers m, if and only if

T has a dilation of the form $I \otimes A$.

Operator Systems

An subspace of operator system $S \subseteq B(H)$ is an operator system if $I_H \in S$ and $T^* \in S$ whenever $T \in S$.

<<p>Image: Image: Image

We can rephrase and refine the old results as follows.

We can rephrase and refine the old results as follows.

Theorem

Let $S = \operatorname{span} \{I, A, A^*\}$, where $A \in M_2$ or $A \in M_3$ such that the boundary of W(A) has a flat portion. Equivalently, $e^{it}A + e^{-it}A^*$ has a repeated eigenvalue for some $t \in [0, \pi]$.

Then every positive linear map $\Phi : S \to B(H)$ is a completely positive map. (†)

We can rephrase and refine the old results as follows.

Theorem

Let $S = \operatorname{span} \{I, A, A^*\}$, where $A \in M_2$ or $A \in M_3$ such that the boundary of W(A) has a flat portion. Equivalently, $e^{it}A + e^{-it}A^*$ has a repeated eigenvalue for some $t \in [0, \pi]$.

Then every positive linear map $\Phi : S \to B(H)$ is a completely positive map. (†)

An operator system S is a maximal operator system (OMAX) if it satisfies (†).

We can rephrase and refine the old results as follows.

Theorem

Let $S = \operatorname{span} \{I, A, A^*\}$, where $A \in M_2$ or $A \in M_3$ such that the boundary of W(A) has a flat portion. Equivalently, $e^{it}A + e^{-it}A^*$ has a repeated eigenvalue for some $t \in [0, \pi]$.

Then every positive linear map $\Phi : S \to B(H)$ is a completely positive map. (†)

An operator system S is a maximal operator system (OMAX) if it satisfies (†).

The study of OMAX is related to the study of quantum channels such as entanglement breaking channels; see Paulsen et al. (2017).

The joint numerical ranges

• The joint numerical range of self-adjoint operators $T_1, \ldots, T_m \in B(H)$ is

$$W(T_1,\ldots,T_m) = \{(\langle T_1x,x\rangle,\ldots,\langle T_mx,x\rangle): x \in H, \langle x,x\rangle = 1\}.$$

• • • • • • • •

∢ ≣⇒

The joint numerical ranges

• The joint numerical range of self-adjoint operators $T_1, \ldots, T_m \in B(H)$ is

$$W(T_1,\ldots,T_m) = \{(\langle T_1x,x\rangle,\ldots,\langle T_mx,x\rangle): x \in H, \langle x,x\rangle = 1\}.$$

イロト イヨト イヨト イヨト

臣

• If $T_j = H_j + iG_j$ for self-adjoint H_j, K_j for $j = 1, \ldots, m$, then

$$W(\mathit{T}_1,\ldots,\mathit{T}_m)\subseteq\mathbb{C}^m$$
 and $W(\mathit{H}_1,\mathit{G}_1,\ldots,\mathit{H}_m,\mathit{G}_m)\subseteq\mathbb{R}^{2m}$

can be identified.

The joint numerical ranges

• The joint numerical range of self-adjoint operators $T_1, \ldots, T_m \in B(H)$ is

$$W(T_1,\ldots,T_m) = \{(\langle T_1x,x\rangle,\ldots,\langle T_mx,x\rangle): x \in H, \langle x,x\rangle = 1\}.$$

• If $T_j = H_j + iG_j$ for self-adjoint H_j, K_j for j = 1, ..., m, then

$$W(\mathit{T}_1,\ldots,\mathit{T}_m)\subseteq\mathbb{C}^m$$
 and $W(\mathit{H}_1,\mathit{G}_1,\ldots,\mathit{H}_m,\mathit{G}_m)\subseteq\mathbb{R}^{2m}$

can be identified.

• So, we usually consider the joint numerical range of self-adjoint operators.

・ロト ・四ト ・ヨト ・ヨト

The joint numerical ranges

• The joint numerical range of self-adjoint operators $T_1, \ldots, T_m \in B(H)$ is

$$W(T_1,\ldots,T_m) = \{(\langle T_1x,x\rangle,\ldots,\langle T_mx,x\rangle): x \in H, \langle x,x\rangle = 1\}.$$

• If $T_j = H_j + iG_j$ for self-adjoint H_j, K_j for j = 1, ..., m, then

$$W(\mathit{T}_1,\ldots,\mathit{T}_m)\subseteq\mathbb{C}^m$$
 and $W(\mathit{H}_1,\mathit{G}_1,\ldots,\mathit{H}_m,\mathit{G}_m)\subseteq\mathbb{R}^{2m}$

can be identified.

- So, we usually consider the joint numerical range of self-adjoint operators.
- The *m*-tuple (*T*₁,..., *T_m*) has a joint dilation (*A*₁,..., *A_m*) if there is a partial isometry X such that

$$X^*A_jX = T_j$$
 for $j = 1, ..., m$.

The joint numerical ranges

• The joint numerical range of self-adjoint operators $T_1, \ldots, T_m \in B(H)$ is

$$W(T_1,\ldots,T_m) = \{(\langle T_1x,x\rangle,\ldots,\langle T_mx,x\rangle): x \in H, \langle x,x\rangle = 1\}.$$

• If $T_j = H_j + iG_j$ for self-adjoint H_j, K_j for $j = 1, \ldots, m$, then

$$W(\mathit{T}_1,\ldots,\mathit{T}_m)\subseteq \mathbb{C}^m$$
 and $W(\mathit{H}_1,\mathit{G}_1,\ldots,\mathit{H}_m,\mathit{G}_m)\subseteq \mathbb{R}^{2m}$

can be identified.

- So, we usually consider the joint numerical range of self-adjoint operators.
- The *m*-tuple (*T*₁,...,*T_m*) has a joint dilation (*A*₁,...,*A_m*) if there is a partial isometry *X* such that

$$X^*A_jX = T_j$$
 for $j = 1, ..., m$.

 Let S have a basis {I_n, A₁,..., A_m} such that A₁,..., A_m are Hermitian. Then S is an OMAX if and only if (T₁,..., T_m) ∈ B(H)^m has a joint dilation of the form (I ⊗ A₁,..., I ⊗ A_m) whenever

$$W(T_1,\ldots,T_m)\subseteq \operatorname{conv} W(A_1,\ldots,A_m).$$

ヘロア 人間 アメヨア メヨア

• If $W(T_1, T_2, T_3)$ lies inside in a simplex in \mathbb{R}^3 with vertices:

$$\mathbf{v}_{1} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix}, \mathbf{v}_{3} = \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \end{pmatrix}, \mathbf{v}_{4} = \begin{pmatrix} d_{1} \\ d_{2} \\ d_{3} \end{pmatrix},$$

• • • • • • • • • •

臣

• If $W(T_1, T_2, T_3)$ lies inside in a simplex in \mathbb{R}^3 with vertices:

$$\mathbf{v}_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix},$$

then (T_1, T_2, T_3) has a joint dilation (D_1, D_2, D_3) with

$$D_j = I \otimes \operatorname{diag}(a_j, b_j, c_j, d_j)$$
 for $j = 1, 2, 3$.

• If $W(T_1, T_2, T_3)$ lies inside in a simplex in \mathbb{R}^3 with vertices:

$$\mathbf{v}_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix},$$

then (T_1, T_2, T_3) has a joint dilation (D_1, D_2, D_3) with

$$D_j = I \otimes \operatorname{diag}(a_j, b_j, c_j, d_j)$$
 for $j = 1, 2, 3$.

• Note that one can choose any $\textit{v}_1,\textit{v}_2,\textit{v}_3,\textit{v}_4 \in \mathbb{R}^3$ as long as

 $W(T_1, T_2, T_3) \subseteq \operatorname{conv} \{v_1, v_2, v_3, v_4\}.$

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

◆ □ ▶ ◆ 🗇 ▶

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m .

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S \subseteq \mathbb{R}^m$ is a simplex with vertices

$$\mathbf{v}_1 = \begin{pmatrix} \mathbf{v}_{11} \\ \vdots \\ \mathbf{v}_{1m} \end{pmatrix}, \cdots, \mathbf{v}_{m+1} = \begin{pmatrix} \mathbf{v}_{m+1,1} \\ \vdots \\ \mathbf{v}_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S \subseteq \mathbb{R}^m$ is a simplex with vertices

$$\mathbf{v}_1 = \begin{pmatrix} \mathbf{v}_{11} \\ \vdots \\ \mathbf{v}_{1m} \end{pmatrix}, \cdots, \mathbf{v}_{m+1} = \begin{pmatrix} \mathbf{v}_{m+1,1} \\ \vdots \\ \mathbf{v}_{m+1,m} \end{pmatrix} \in \mathbb{R}^m$$

Then $W(T_1, \ldots, T_m) \subseteq S$ if and only if

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S \subseteq \mathbb{R}^m$ is a simplex with vertices

$$\mathbf{v}_1 = \begin{pmatrix} \mathbf{v}_{11} \\ \vdots \\ \mathbf{v}_{1m} \end{pmatrix}, \cdots, \mathbf{v}_{m+1} = \begin{pmatrix} \mathbf{v}_{m+1,1} \\ \vdots \\ \mathbf{v}_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Then $W(T_1, \ldots, T_m) \subseteq S$ if and only if T_1, \ldots, T_m has a joint dilation to the diagonal operators

$$I_N \otimes A_j$$
 with $A_j = \begin{pmatrix} v_{1j} & & \\ & \ddots & \\ & & v_{m+1,j} \end{pmatrix} \in M_{m+1}, \quad j = 1, \dots, m.$

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_3$ is normal or if W(A) is a triangular disk.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S \subseteq \mathbb{R}^m$ is a simplex with vertices

$$\mathbf{v}_1 = \begin{pmatrix} \mathbf{v}_{11} \\ \vdots \\ \mathbf{v}_{1m} \end{pmatrix}, \cdots, \mathbf{v}_{m+1} = \begin{pmatrix} \mathbf{v}_{m+1,1} \\ \vdots \\ \mathbf{v}_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Then $W(T_1, \ldots, T_m) \subseteq S$ if and only if T_1, \ldots, T_m has a joint dilation to the diagonal operators

$$I_N \otimes A_j$$
 with $A_j = \begin{pmatrix} v_{1j} & & \\ & \ddots & \\ & & v_{m+1,j} \end{pmatrix} \in M_{m+1}, \quad j = 1, \dots, m.$

That is, there is a partial isometry X such that

$$X^*(I_N \otimes A_j)X = T_j, \quad j = 1, \ldots, m.$$

Chi-Kwong Li, William & Mary / IQC

Theorem [Li and Poon, 2019+]

• If $S = M_n$, then S is NOT an OMAX.

臣

イロト イヨト イヨト

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $S = M_n$, then S is NOT an OMAX.
- An operator system $S \subseteq M_2$ is an OMAX if and only if S has dimension less than 4.

< < >>

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $S = M_n$, then S is NOT an OMAX.
- An operator system $S \subseteq M_2$ is an OMAX if and only if S has dimension less than 4.
- An operator system $S \subseteq M_n$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.

Theorem [Li and Poon, 2019+]

- If $S = M_n$, then S is NOT an OMAX.
- An operator system $S \subseteq M_2$ is an OMAX if and only if S has dimension less than 4.
- An operator system $S \subseteq M_n$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.
- An operator system S ⊆ M_n is an OMAX if there is a unitary U ∈ M_n satisfying U*SU = {U*AU : A ∈ S} has a basis

 $\{E_{jj}: 1 \leq j \leq n\} \cup \{E_{2j-1,2j} + E_{2j,2j-1}: 1 \leq j \leq n/2\}.$

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $S = M_n$, then S is NOT an OMAX.
- An operator system $S \subseteq M_2$ is an OMAX if and only if S has dimension less than 4.
- An operator system $S \subseteq M_n$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.
- An operator system $S \subseteq M_n$ is an OMAX if there is a unitary $U \in M_n$ satisfying $U^*SU = \{U^*AU : A \in S\}$ has a basis

$${E_{jj}: 1 \leq j \leq n} \cup {E_{2j-1,2j} + E_{2j,2j-1}: 1 \leq j \leq n/2}.$$

Corollary

An operator system $S = \text{span} \{I, A_1, A_2, A_3\} \subseteq M_3$ is an OMAX if $W(A_1, A_2, A_3)$ is a non-degenerate ice-cream cone,

< ロ > < 同 > < 臣 > < 臣

i.e., the convex hull of a point and an elliptical disk with non-empty interior.

• Mathematically, quantum states are represented by density matrices,

< < >>

→ ▲ 토 ▶

• Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(A) = F_1 A F_1^* + \cdots + F_r A F_r^*, \qquad A \in M_n$$

with $F_1, \ldots, F_r \in M_{m \times n}$ satisfying $F_1^* F_1 + \cdots + F_r^* F_r = I_n$.

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(A) = F_1 A F_1^* + \cdots + F_r A F_r^*, \qquad A \in M_n$$

with $F_1, \ldots, F_r \in M_{m \times n}$ satisfying $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

• The operator system associated with Φ is denoted and defined by

$$\mathcal{S}(\Phi) = \operatorname{span} \{F_i^* F_j : 1 \leq i, j \leq r\} \subseteq M_n.$$

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(A) = F_1 A F_1^* + \cdots + F_r A F_r^*, \qquad A \in M_n$$

with $F_1, \ldots, F_r \in M_{m \times n}$ satisfying $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

• The operator system associated with Φ is denoted and defined by

$$\mathcal{S}(\Phi) = \operatorname{span} \{F_i^*F_j : 1 \leq i, j \leq r\} \subseteq M_n.$$

イロト イヨト イヨト イヨト

There is a basis {*I_n*, *A*₁,..., *A_m*} for S(Φ) consisting of Hermitian matrices.

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(A) = F_1 A F_1^* + \cdots + F_r A F_r^*, \qquad A \in M_n$$

with $F_1, \ldots, F_r \in M_{m \times n}$ satisfying $F_1^*F_1 + \cdots + F_r^*F_r = I_n$.

• The operator system associated with Φ is denoted and defined by

$$\mathcal{S}(\Phi) = \operatorname{span} \{F_i^* F_j : 1 \leq i, j \leq r\} \subseteq M_n.$$

- There is a basis {*I_n*, *A*₁,..., *A_m*} for S(Φ) consisting of Hermitian matrices.
- Properties of S(Φ), and hence Φ can be studied via certain generalized numerical ranges of (A₁,..., A_m).

<ロ> <四> <四> <四> <三</td>

(Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If S ⊆ M_n is an operator system, then there is a quantum operation Ψ : M_n → M_k such that S = S(Ψ). If dim S ≤ ℓ², then we can have k < n.

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If S ⊆ M_n is an operator system, then there is a quantum operation Ψ : M_n → M_k such that S = S(Ψ). If dim S ≤ ℓ², then we can have k < n.
- (Quantum Channel Complexity) For a given channel Φ and S = S(Φ), the smallest k for the existence of a quantum channel Ψ : M_n → M_k such that S(Φ) = S(Ψ) is the complexity of Φ.

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $S \subseteq M_n$ is an operator system, then there is a quantum operation $\Psi : M_n \to M_k$ such that $S = S(\Psi)$. If dim $S \leq \ell^2$, then we can have k < n.
- (Quantum Channel Complexity) For a given channel Φ and S = S(Φ), the smallest k for the existence of a quantum channel Ψ : M_n → M_k such that S(Φ) = S(Ψ) is the complexity of Φ.
- (Quantum Channel Capacity) The quantum channel Φ can distinguish k (pure) quantum state (unambiguously) if and only if there is an n × k matrix X such that X*X = I_k and

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $S \subseteq M_n$ is an operator system, then there is a quantum operation $\Psi : M_n \to M_k$ such that $S = S(\Psi)$. If dim $S \leq \ell^2$, then we can have k < n.
- (Quantum Channel Complexity) For a given channel Φ and S = S(Φ), the smallest k for the existence of a quantum channel Ψ : M_n → M_k such that S(Φ) = S(Ψ) is the complexity of Φ.
- (Quantum Channel Capacity) The quantum channel Φ can distinguish k (pure) quantum state (unambiguously) if and only if there is an n × k matrix X such that X*X = I_k and

 $X^*A_jX = D_j \in M_k$ for some diagonal matrix D_j for $j = 1, \ldots, m$.

イロト イヨト イヨト イヨト

• There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^*X = I_k$ and

 </

• There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^*X = I_k$ and

$$X^*A_jX = a_jI_k$$
 with $a_j \in \mathbb{C}$ for $j = 1, \ldots, m$.

 </

• There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^*X = I_k$ and

$$X^*A_jX = a_jI_k$$
 with $a_j \in \mathbb{C}$ for $j = 1, \ldots, m$.

 One may get "better" quantum error correction code if there is an n × k matrix X such that X*X = Ik and

$$X^*A_jX = (I_{p_1} \otimes B_{1j}) \oplus \cdots \oplus (I_{p_r} \otimes B_{rj}) = \begin{pmatrix} I_{p_1} \otimes B_{1j} & & \\ & \ddots & \\ & & & I_{p_1} \otimes B_{rj} \end{pmatrix}$$

with positive integers p_1, \ldots, p_k , diagonal / square matrices B_{1j}, \ldots, B_{rj} .

Look forward to hearing your comments.

∢ ≣ ≯

Chi-Kwong Li, William & Mary / IQC

Look forward to hearing your comments.

Thank you for your attention!

Chi-Kwong Li, William & Mary / IQC