Numerical ranges, operator systems, and quantum channels

Chi-Kwong Li
Department of Mathematics, College of William and Mary, Institute for Quantum Computing, U. of Waterloo

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\left\{\left\langle T_{x}, x\right\rangle: x \in B(H),\langle x, x\rangle=1\right\}
$$

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\left\{\left\langle T_{x}, x\right\rangle: x \in B(H),\langle x, x\rangle=1\right\}
$$

- If $T=\operatorname{diag}(0,1)$, then $W(T)=[0,1]$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\left\{\left\langle T_{x}, x\right\rangle: x \in B(H),\langle x, x\rangle=1\right\}
$$

- If $T=\operatorname{diag}(0,1)$, then $W(T)=[0,1]$.
- If $T=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$, then $W(T)=\operatorname{conv}\left\{a_{1}, a_{2}, a_{3}\right\}$.

Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y\rangle$.
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $\langle x, y\rangle=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\left\{\left\langle T_{x}, x\right\rangle: x \in B(H),\langle x, x\rangle=1\right\}
$$

- If $T=\operatorname{diag}(0,1)$, then $W(T)=[0,1]$.
- If $T=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$, then $W(T)=\operatorname{conv}\left\{a_{1}, a_{2}, a_{3}\right\}$.

- If $T=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$, then $W(T)=\{z \in \mathbb{C}:|z| \leq 1\}$, the unit disk centered at the origin.

Numerical range and dilation

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.

Numerical range and dilation

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.
- Equivalently, there is $X: H \rightarrow K$ such that

$$
X^{*} X=I_{H} \quad \text { and } \quad X^{*} A X=T .
$$

Numerical range and dilation

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{cc}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.
- Equivalently, there is $X: H \rightarrow K$ such that

$$
X^{*} X=I_{H} \quad \text { and } \quad X^{*} A X=T
$$

- If $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.

Numerical range and dilation

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{cc}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.
- Equivalently, there is $X: H \rightarrow K$ such that

$$
X^{*} X=I_{H} \quad \text { and } \quad X^{*} A X=T
$$

- If $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- The converse may not hold. E.g., $T=0_{3} \in M_{3}$ and $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.

Numerical range and dilation

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.
- Equivalently, there is $X: H \rightarrow K$ such that

$$
X^{*} X=I_{H} \quad \text { and } \quad X^{*} A X=T
$$

- If $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- The converse may not hold. E.g., $T=0_{3} \in M_{3}$ and $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.
- Note that $W(A)=W(I \otimes A)$. There are results showing that $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$.

Existing results

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the following.

Existing results

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

- (Mirman, 1968) $A \in M_{3}$ is normal with eigenvalues a_{1}, a_{2}, a_{3}.

Existing results

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

- (Mirman, 1968) $A \in M_{3}$ is normal with eigenvalues a_{1}, a_{2}, a_{3}.

- (Ando, 1973; Averson 1972) $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.

Existing results

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin
－（Mirman，1968）$A \in M_{3}$ is normal with eigenvalues a_{1}, a_{2}, a_{3} ．

－（Ando，1973；Averson 1972）$A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$ ．
－（Choi and Li，2000）$A \in M_{2}$ ．

Existing results

The inclusion $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$ if A satisfies one of the followin

- (Mirman, 1968) $A \in M_{3}$ is normal with eigenvalues a_{1}, a_{2}, a_{3}.

- (Ando, 1973; Averson 1972) $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.
- (Choi and Li, 2000) $A \in M_{2}$.

- (Choi and Li, 2001) $A \in M_{3}$ has a reducing eigenvalue, i.e., A is unitarily similar to $[\alpha] \oplus A_{0}$ with $A_{0} \in M_{2}$.

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\}
$$

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\}
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\}
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} \subseteq \operatorname{conv}\{1, i,-1,-i\}=W(A)
$$

The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$, i.e., $W(T) \subseteq W(A)$ does not ensure T has a dilation of the form $I \otimes A$.

- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=W(A)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\}
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} \subseteq \operatorname{conv}\{1, i,-1,-i\}=W(A)
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

Positive maps and completely positive maps

- A map $\Phi: B(H) \rightarrow B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- A map $\Phi: B(H) \rightarrow B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}, \Phi$ is k-positive if

$$
\left(I_{k} \otimes \Phi\right)\left(T_{i j}\right)=\left(\Phi\left(T_{i j}\right)\right) \in M_{k}(B(K)) \quad \text { is positive }
$$

whenever $\left(T_{i j}\right) \in M_{k}(B(H))$ is positive.

Positive maps and completely positive maps

- A map $\Phi: B(H) \rightarrow B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}, \Phi$ is k-positive if

$$
\left(I_{k} \otimes \Phi\right)\left(T_{i j}\right)=\left(\Phi\left(T_{i j}\right)\right) \in M_{k}(B(K)) \quad \text { is positive }
$$

whenever $\left(T_{i j}\right) \in M_{k}(B(H))$ is positive.

- If Φ is k-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_{n}$. Consider the linear map

$$
\phi\left(\mu_{0} I+\mu_{1} A+\mu_{2} A^{*}\right)=\mu_{0} I+\mu_{1} T+\mu_{2} T^{*}
$$

for any $\mu_{0}, \mu_{1}, \mu_{2} \in \mathbb{C}$.

Positive maps and completely positive maps

- A map $\Phi: B(H) \rightarrow B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}, \Phi$ is k-positive if

$$
\left(I_{k} \otimes \Phi\right)\left(T_{i j}\right)=\left(\Phi\left(T_{i j}\right)\right) \in M_{k}(B(K)) \quad \text { is positive }
$$

whenever $\left(T_{i j}\right) \in M_{k}(B(H))$ is positive.

- If Φ is k-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_{n}$. Consider the linear map

$$
\phi\left(\mu_{0} I+\mu_{1} A+\mu_{2} A^{*}\right)=\mu_{0} I+\mu_{1} T+\mu_{2} T^{*}
$$

for any $\mu_{0}, \mu_{1}, \mu_{2} \in \mathbb{C}$.

- The map ϕ is a positive linear map, i.e., ϕ sends positive semidfinite operators to positive operators, if and only if $W(T) \subseteq W(A)$.

Positive maps and completely positive maps

- A map $\Phi: B(H) \rightarrow B(K)$ is positive if $\Phi(T)$ is positive whenever T is.
- For $k \in \mathbb{N}, \Phi$ is k-positive if

$$
\left(I_{k} \otimes \Phi\right)\left(T_{i j}\right)=\left(\Phi\left(T_{i j}\right)\right) \in M_{k}(B(K)) \quad \text { is positive }
$$

whenever $\left(T_{i j}\right) \in M_{k}(B(H))$ is positive.

- If Φ is k-positive for all $k \in \mathbb{N}$ then it is completely positive.

Proposition [Choi and Li, 2000]

Let $T \in B(H)$ and $A \in M_{n}$. Consider the linear map

$$
\phi\left(\mu_{0} I+\mu_{1} A+\mu_{2} A^{*}\right)=\mu_{0} I+\mu_{1} T+\mu_{2} T^{*}
$$

for any $\mu_{0}, \mu_{1}, \mu_{2} \in \mathbb{C}$.

- The map ϕ is a positive linear map, i.e., ϕ sends positive semidfinite operators to positive operators, if and only if $W(T) \subseteq W(A)$.
- The map ϕ is completely positive, i.e., $I_{m} \otimes \phi$ send positive operators to positive operators for all positive integers m, if and only if
T has a dilation of the form $I \otimes A$.

Operator Systems

An subspace of operator system $\mathcal{S} \subseteq B(H)$ is an operator system if $I_{H} \in \mathcal{S}$ and $T^{*} \in \mathcal{S}$ whenever $T \in \mathcal{S}$.

Operator Systems

An subspace of operator system $\mathcal{S} \subseteq B(H)$ is an operator system if $I_{H} \in \mathcal{S}$ and $T^{*} \in \mathcal{S}$ whenever $T \in \mathcal{S}$.

We can rephrase and refine the old results as follows.

Operator Systems

An subspace of operator system $\mathcal{S} \subseteq B(H)$ is an operator system if $I_{H} \in \mathcal{S}$ and $T^{*} \in \mathcal{S}$ whenever $T \in \mathcal{S}$.

We can rephrase and refine the old results as follows.

Theorem

Let $\mathcal{S}=\operatorname{span}\left\{I, A, A^{*}\right\}$, where $A \in M_{2}$ or $A \in M_{3}$ such that the boundary of
$W(A)$ has a flat portion. Equivalently, $e^{i t} A+e^{-i t} A^{*}$ has a repeated eigenvalue for some $t \in[0, \pi]$.
Then every positive linear map $\Phi: \mathcal{S} \rightarrow B(H)$ is a completely positive map. (\dagger)

Operator Systems

An subspace of operator system $\mathcal{S} \subseteq B(H)$ is an operator system if $I_{H} \in \mathcal{S}$ and $T^{*} \in \mathcal{S}$ whenever $T \in \mathcal{S}$.

We can rephrase and refine the old results as follows.

Theorem

Let $\mathcal{S}=\operatorname{span}\left\{I, A, A^{*}\right\}$, where $A \in M_{2}$ or $A \in M_{3}$ such that the boundary of
$W(A)$ has a flat portion. Equivalently, $e^{i t} A+e^{-i t} A^{*}$ has a repeated eigenvalue for some $t \in[0, \pi]$.
Then every positive linear map $\Phi: \mathcal{S} \rightarrow B(H)$ is a completely positive map. (\dagger)

An operator system \mathcal{S} is a maximal operator system (OMAX) if it satisfies (\dagger).

Operator Systems

An subspace of operator system $\mathcal{S} \subseteq B(H)$ is an operator system if $I_{H} \in \mathcal{S}$ and $T^{*} \in \mathcal{S}$ whenever $T \in \mathcal{S}$.

We can rephrase and refine the old results as follows.

Theorem

Let $\mathcal{S}=\operatorname{span}\left\{I, A, A^{*}\right\}$, where $A \in M_{2}$ or $A \in M_{3}$ such that the boundary of $W(A)$ has a flat portion. Equivalently, $e^{i t} A+e^{-i t} A^{*}$ has a repeated eigenvalue for some $t \in[0, \pi]$.

Then every positive linear map $\Phi: \mathcal{S} \rightarrow B(H)$ is a completely positive map. (\dagger)

An operator system \mathcal{S} is a maximal operator system (OMAX) if it satisfies (\dagger).
The study of OMAX is related to the study of quantum channels such as entanglement breaking channels; see Paulsen et al. (2017).

The joint numerical ranges

- The joint numerical range of self-adjoint operators $T_{1}, \ldots, T_{m} \in B(H)$ is

$$
W\left(T_{1}, \ldots, T_{m}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\} .
$$

The joint numerical ranges

- The joint numerical range of self-adjoint operators $T_{1}, \ldots, T_{m} \in B(H)$ is

$$
W\left(T_{1}, \ldots, T_{m}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\}
$$

- If $T_{j}=H_{j}+i G_{j}$ for self-adjoint H_{j}, K_{j} for $j=1, \ldots, m$, then

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \mathbb{C}^{m} \text { and } W\left(H_{1}, G_{1}, \ldots, H_{m}, G_{m}\right) \subseteq \mathbb{R}^{2 m}
$$

can be identified.

- The joint numerical range of self-adjoint operators $T_{1}, \ldots, T_{m} \in B(H)$ is

$$
W\left(T_{1}, \ldots, T_{m}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\}
$$

- If $T_{j}=H_{j}+i G_{j}$ for self-adjoint H_{j}, K_{j} for $j=1, \ldots, m$, then

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \mathbb{C}^{m} \text { and } W\left(H_{1}, G_{1}, \ldots, H_{m}, G_{m}\right) \subseteq \mathbb{R}^{2 m}
$$

can be identified.

- So, we usually consider the joint numerical range of self-adjoint operators.

The joint numerical ranges

- The joint numerical range of self-adjoint operators $T_{1}, \ldots, T_{m} \in B(H)$ is

$$
W\left(T_{1}, \ldots, T_{m}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\}
$$

- If $T_{j}=H_{j}+i G_{j}$ for self-adjoint H_{j}, K_{j} for $j=1, \ldots, m$, then

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \mathbb{C}^{m} \text { and } W\left(H_{1}, G_{1}, \ldots, H_{m}, G_{m}\right) \subseteq \mathbb{R}^{2 m}
$$

can be identified.

- So, we usually consider the joint numerical range of self-adjoint operators.
- The m-tuple $\left(T_{1}, \ldots, T_{m}\right)$ has a joint dilation $\left(A_{1}, \ldots, A_{m}\right)$ if there is a partial isometry X such that

$$
X^{*} A_{j} X=T_{j} \text { for } j=1, \ldots, m
$$

The joint numerical ranges

- The joint numerical range of self-adjoint operators $T_{1}, \ldots, T_{m} \in B(H)$ is

$$
W\left(T_{1}, \ldots, T_{m}\right)=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{m} x, x\right\rangle\right): x \in H,\langle x, x\rangle=1\right\}
$$

- If $T_{j}=H_{j}+i G_{j}$ for self-adjoint H_{j}, K_{j} for $j=1, \ldots, m$, then

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \mathbb{C}^{m} \text { and } W\left(H_{1}, G_{1}, \ldots, H_{m}, G_{m}\right) \subseteq \mathbb{R}^{2 m}
$$

can be identified.

- So, we usually consider the joint numerical range of self-adjoint operators.
- The m-tuple $\left(T_{1}, \ldots, T_{m}\right)$ has a joint dilation $\left(A_{1}, \ldots, A_{m}\right)$ if there is a partial isometry X such that

$$
X^{*} A_{j} X=T_{j} \text { for } j=1, \ldots, m
$$

- Let \mathcal{S} have a basis $\left\{I_{n}, A_{1}, \ldots, A_{m}\right\}$ such that A_{1}, \ldots, A_{m} are Hermitian. Then \mathcal{S} is an OMAX if and only if $\left(T_{1}, \ldots, T_{m}\right) \in B(H)^{m}$ has a joint dilation of the form $\left(I \otimes A_{1}, \ldots, I \otimes A_{m}\right)$ whenever

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \operatorname{conv} W\left(A_{1}, \ldots, A_{m}\right)
$$

Extension of Mirman's result

- If $W\left(T_{1}, T_{2}, T_{3}\right)$ lies inside in a simplex in \mathbb{R}^{3} with vertices:

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right),
$$

Extension of Mirman's result

- If $W\left(T_{1}, T_{2}, T_{3}\right)$ lies inside in a simplex in \mathbb{R}^{3} with vertices:

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right),
$$

then $\left(T_{1}, T_{2}, T_{3}\right)$ has a joint dilation $\left(D_{1}, D_{2}, D_{3}\right)$ with

$$
D_{j}=I \otimes \operatorname{diag}\left(a_{j}, b_{j}, c_{j}, d_{j}\right) \text { for } j=1,2,3
$$

Extension of Mirman's result

- If $W\left(T_{1}, T_{2}, T_{3}\right)$ lies inside in a simplex in \mathbb{R}^{3} with vertices:

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right),
$$

then $\left(T_{1}, T_{2}, T_{3}\right)$ has a joint dilation $\left(D_{1}, D_{2}, D_{3}\right)$ with

$$
D_{j}=I \otimes \operatorname{diag}\left(a_{j}, b_{j}, c_{j}, d_{j}\right) \text { for } j=1,2,3
$$

- Note that one can choose any $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{3}$ as long as

$$
W\left(T_{1}, T_{2}, T_{3}\right) \subseteq \operatorname{conv}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick, Li, 1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has
non-empty interior in \mathbb{R}^{m}.

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if T_{1}, \ldots, T_{m} has a joint dilation to the diagonal operators

$$
I_{N} \otimes A_{j} \quad \text { with } \quad A_{j}=\left(\begin{array}{ccc}
v_{1 j} & & \\
& \ddots & \\
& & v_{m+1, j}
\end{array}\right) \in M_{m+1}, \quad j=1, \ldots, m
$$

Joint dilation

The result of Mirman asserts that $T \in B(H)$ has a dilation of the form $I \otimes A$ whenever $W(T) \subseteq W(A)$ if $A \in M_{3}$ is normal or if $W(A)$ is a triangular disk.

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if T_{1}, \ldots, T_{m} has a joint dilation to the diagonal operators

$$
I_{N} \otimes A_{j} \quad \text { with } \quad A_{j}=\left(\begin{array}{ccc}
v_{1 j} & & \\
& \ddots & \\
& & v_{m+1, j}
\end{array}\right) \in M_{m+1}, \quad j=1, \ldots, m
$$

That is, there is a partial isometry X such that

$$
X^{*}\left(I_{N} \otimes A_{j}\right) X=T_{j}, \quad j=1, \ldots, m
$$

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $\mathcal{S}=M_{n}$, then \mathcal{S} is NOT an OMAX.

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $\mathcal{S}=M_{n}$, then \mathcal{S} is NOT an OMAX.
- An operator system $\mathcal{S} \subseteq M_{2}$ is an OMAX if and only if \mathcal{S} has dimension less than 4.

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $\mathcal{S}=M_{n}$, then \mathcal{S} is NOT an OMAX.
- An operator system $\mathcal{S} \subseteq M_{2}$ is an OMAX if and only if \mathcal{S} has dimension less than 4.
- An operator system $\mathcal{S} \subseteq M_{n}$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $\mathcal{S}=M_{n}$, then \mathcal{S} is NOT an OMAX.
- An operator system $\mathcal{S} \subseteq M_{2}$ is an OMAX if and only if \mathcal{S} has dimension less than 4.
- An operator system $\mathcal{S} \subseteq M_{n}$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.
- An operator system $\mathcal{S} \subseteq M_{n}$ is an OMAX if there is a unitary $U \in M_{n}$ satisfying $U^{*} \mathcal{S} U=\left\{U^{*} A U: A \in \mathcal{S}\right\}$ has a basis

$$
\left\{E_{j j}: 1 \leq j \leq n\right\} \cup\left\{E_{2 j-1,2 j}+E_{2 j, 2 j-1}: 1 \leq j \leq n / 2\right\} .
$$

Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

- If $\mathcal{S}=M_{n}$, then \mathcal{S} is NOT an OMAX.
- An operator system $\mathcal{S} \subseteq M_{2}$ is an OMAX if and only if \mathcal{S} has dimension less than 4.
- An operator system $\mathcal{S} \subseteq M_{n}$ of dimension 3 is an OMAX if it contains a rank one Hermitian matrix.
- An operator system $\mathcal{S} \subseteq M_{n}$ is an OMAX if there is a unitary $U \in M_{n}$ satisfying $U^{*} \mathcal{S} U=\left\{U^{*} A U: A \in \mathcal{S}\right\}$ has a basis

$$
\left\{E_{j j}: 1 \leq j \leq n\right\} \cup\left\{E_{2 j-1,2 j}+E_{2 j, 2 j-1}: 1 \leq j \leq n / 2\right\} .
$$

Corollary

An operator system $\mathcal{S}=\operatorname{span}\left\{I, A_{1}, A_{2}, A_{3}\right\} \subseteq M_{3}$ is an OMAX if $W\left(A_{1}, A_{2}, A_{3}\right)$ is a non-degenerate ice-cream cone, i.e., the convex hull of a point and an elliptical disk with non-empty interior.

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices,

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}, \quad A \in M_{n}
$$

with $F_{1}, \ldots, F_{r} \in M_{m \times n}$ satisfying $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}, \quad A \in M_{n}
$$

with $F_{1}, \ldots, F_{r} \in M_{m \times n}$ satisfying $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- The operator system associated with Φ is denoted and defined by

$$
\mathcal{S}(\Phi)=\operatorname{span}\left\{F_{i}^{*} F_{j}: 1 \leq i, j \leq r\right\} \subseteq M_{n}
$$

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}, \quad A \in M_{n}
$$

with $F_{1}, \ldots, F_{r} \in M_{m \times n}$ satisfying $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- The operator system associated with Φ is denoted and defined by

$$
\mathcal{S}(\Phi)=\operatorname{span}\left\{F_{i}^{*} F_{j}: 1 \leq i, j \leq r\right\} \subseteq M_{n}
$$

- There is a basis $\left\{I_{n}, A_{1}, \ldots, A_{m}\right\}$ for $\mathcal{S}(\Phi)$ consisting of Hermitian matrices.

Quantum channels and operator systems

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum channels (also known as quantum operations) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(A)=F_{1} A F_{1}^{*}+\cdots+F_{r} A F_{r}^{*}, \quad A \in M_{n}
$$

with $F_{1}, \ldots, F_{r} \in M_{m \times n}$ satisfying $F_{1}^{*} F_{1}+\cdots+F_{r}^{*} F_{r}=I_{n}$.

- The operator system associated with Φ is denoted and defined by

$$
\mathcal{S}(\Phi)=\operatorname{span}\left\{F_{i}^{*} F_{j}: 1 \leq i, j \leq r\right\} \subseteq M_{n}
$$

- There is a basis $\left\{I_{n}, A_{1}, \ldots, A_{m}\right\}$ for $\mathcal{S}(\Phi)$ consisting of Hermitian matrices.
- Properties of $\mathcal{S}(\Phi)$, and hence Φ can be studied via certain generalized numerical ranges of $\left(A_{1}, \ldots, A_{m}\right)$.

Numerical Ranges and Operator Systems

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $\mathcal{S} \subseteq M_{n}$ is an operator system, then there is a quantum operation $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}=\mathcal{S}(\Psi)$. If $\operatorname{dim} \mathcal{S} \leq \ell^{2}$, then we can have $k<n$.

Numerical Ranges and Operator Systems

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $\mathcal{S} \subseteq M_{n}$ is an operator system, then there is a quantum operation $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}=\mathcal{S}(\Psi)$. If $\operatorname{dim} \mathcal{S} \leq \ell^{2}$, then we can have $k<n$.
- (Quantum Channel Complexity) For a given channel Φ and $\mathcal{S}=\mathcal{S}(\Phi)$, the smallest k for the existence of a quantum channel $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ is the complexity of Φ.

Numerical Ranges and Operator Systems

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $\mathcal{S} \subseteq M_{n}$ is an operator system, then there is a quantum operation $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}=\mathcal{S}(\Psi)$. If $\operatorname{dim} \mathcal{S} \leq \ell^{2}$, then we can have $k<n$.
- (Quantum Channel Complexity) For a given channel Φ and $\mathcal{S}=\mathcal{S}(\Phi)$, the smallest k for the existence of a quantum channel $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ is the complexity of Φ.
- (Quantum Channel Capacity) The quantum channel Φ can distinguish k (pure) quantum state (unambiguously) if and only if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and

Numerical Ranges and Operator Systems

- (Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If $\mathcal{S} \subseteq M_{n}$ is an operator system, then there is a quantum operation $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}=\mathcal{S}(\Psi)$. If $\operatorname{dim} \mathcal{S} \leq \ell^{2}$, then we can have $k<n$.
- (Quantum Channel Complexity) For a given channel Φ and $\mathcal{S}=\mathcal{S}(\Phi)$, the smallest k for the existence of a quantum channel $\Psi: M_{n} \rightarrow M_{k}$ such that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ is the complexity of Φ.
- (Quantum Channel Capacity) The quantum channel Φ can distinguish k (pure) quantum state (unambiguously) if and only if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and
$X^{*} A_{j} X=D_{j} \in M_{k}$ for some diagonal matrix D_{j} for $j=1, \ldots, m$.

Quantum error correction

- There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and

Quantum error correction

- There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and

$$
X^{*} A_{j} X=a_{j} I_{k} \text { with } a_{j} \in \mathbb{C} \text { for } j=1, \ldots, m
$$

Quantum error correction

- There is a quantum error correction code of dimension k if and only if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and

$$
X^{*} A_{j} X=a_{j} I_{k} \text { with } a_{j} \in \mathbb{C} \text { for } j=1, \ldots, m
$$

- One may get "better" quantum error correction code if there is an $n \times k$ matrix X such that $X^{*} X=I_{k}$ and

$$
X^{*} A_{j} X=\left(I_{p_{1}} \otimes B_{1 j}\right) \oplus \cdots \oplus\left(I_{p_{r}} \otimes B_{r j}\right)=\left(\begin{array}{ccc}
I_{p_{1}} \otimes B_{1 j} & & \\
& \ddots & \\
& & I_{p_{1}} \otimes B_{r j}
\end{array}\right)
$$

with positive integers p_{1}, \ldots, p_{k}, diagonal / square matrices $B_{1 j}, \ldots, B_{r j}$.

Look forward to hearing your comments.

Look forward to hearing your comments.
Thank you for your attention!

