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Introduction

Let B(H) be the algebra of bounded linear operators acting on the
Hilbert space H equipped with the inner product 〈x , y〉.

If H has dimension n, we identify B(H) with Mn, the algebra of n × n
matrices with inner product 〈x , y〉 = y∗x .
The numerical range of T ∈ B(H) is the set

W (T ) = {〈Tx , x〉 : x ∈ B(H), 〈x , x〉 = 1}.

If T = diag (0, 1), then W (T ) = [0, 1].

If T = diag (a1, a2, a3), then W (T ) = conv {a1, a2, a3}.

If T =
(

0 2
0 0

)
, then W (T ) = {z ∈ C : |z| ≤ 1},

the unit disk centered at the origin.
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Numerical range and dilation

We say that T ∈ B(H) has a dilation A ∈ B(K) with H ⊆ K if A has

operator matrix
(

T ∗
∗ ∗

)
with respect to some orthonormal basis.

Equivalently, there is X : H → K such that

X∗X = IH and X∗AX = T .

If A =
(

T ∗
∗ ∗

)
, then W (T ) ⊆W (A).

The converse may not hold. E.g., T = 03 ∈ M3 and A =
(

0 2
0 0

)
.

Note that W (A) = W (I ⊗ A). There are results showing that

W (T ) ⊆W (A) ensures that T ∈ B(H) has a dilation of the form I ⊗ A.
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Existing results

The inclusion W (T ) ⊆W (A) ensures that T ∈ B(H) has a dilation of the
form I ⊗ A if A satisfies one of the following.

(Mirman, 1968) A ∈ M3 is normal
with eigenvalues a1, a2, a3.

(Ando, 1973; Averson 1972) A =
(

0 2
0 0

)
.

(Choi and Li, 2000) A ∈ M2.

(Choi and Li, 2001) A ∈ M3 has a reducing eigenvalue,
i.e., A is unitarily similar to [α]⊕ A0 with A0 ∈ M2.
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The result may fail for general A ∈ M3 or normal A ∈ M4, i.e., W (T ) ⊆W (A)
does not ensure T has a dilation of the form I ⊗ A.

Let A =
(

0 1 0
0 0 1
0 0 0

)
and T =

(
0
√
2

0 0

)
. Then

W (T ) = W (A) = {µ ∈ C : |µ| ≤ 1/
√
2}.

But ‖T‖ =
√
2 > 1 = ‖A‖ so that T has no dilation of the form I ⊗ A.

Let A = diag (1, i ,−1,−i) and T =
(
0
√
2

0 0

)
. Then

W (T ) = {µ ∈ C : |µ| ≤ 1/
√
2} ⊆ conv {1, i ,−1,−i} = W (A).

But ‖T‖ =
√
2 > 1 = ‖A‖ so that T has no dilation of the form I ⊗ A.
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Positive maps and completely positive maps

A map Φ : B(H)→ B(K) is positive if Φ(T ) is positive whenever T is.

For k ∈ N, Φ is k-positive if

(Ik ⊗ Φ)(Tij ) = (Φ(Tij )) ∈ Mk (B(K)) is positive

whenever (Tij ) ∈ Mk (B(H)) is positive.
If Φ is k-positive for all k ∈ N then it is completely positive.

Proposition [Choi and Li, 2000]
Let T ∈ B(H) and A ∈ Mn. Consider the linear map

φ(µ0I + µ1A + µ2A∗) = µ0I + µ1T + µ2T ∗

for any µ0, µ1, µ2 ∈ C.

The map φ is a positive linear map, i.e., φ sends positive semidfinite
operators to positive operators, if and only if W (T ) ⊆W (A).
The map φ is completely positive, i.e., Im ⊗ φ send positive operators to
positive operators for all positive integers m, if and only if

T has a dilation of the form I ⊗ A.
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Operator Systems

An subspace of operator system S ⊆ B(H) is an operator system if IH ∈ S and
T ∗ ∈ S whenever T ∈ S.

We can rephrase and refine the old results as follows.

Theorem
Let S = span {I,A,A∗}, where A ∈ M2 or A ∈ M3 such that the boundary of
W (A) has a flat portion. Equivalently, eit A + e−it A∗ has a repeated eigenvalue for some t ∈ [0, π].

Then every positive linear map Φ : S → B(H) is a completely positive map. (†)

An operator system S is a maximal operator system (OMAX) if it satisfies (†).

The study of OMAX is related to the study of quantum channels such as
entanglement breaking channels; see Paulsen et al. (2017).
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The joint numerical ranges

The joint numerical range of self-adjoint operators T1, . . . ,Tm ∈ B(H) is

W (T1, . . . ,Tm) = {(〈T1x , x〉, . . . , 〈Tmx , x〉) : x ∈ H, 〈x , x〉 = 1}.

If Tj = Hj + iGj for self-adjoint Hj ,Kj for j = 1, . . . ,m, then

W (T1, . . . ,Tm) ⊆ Cm and W (H1,G1, . . . ,Hm,Gm) ⊆ R2m

can be identified.
So, we usually consider the joint numerical range of self-adjoint operators.
The m-tuple (T1, . . . ,Tm) has a joint dilation (A1, . . . ,Am) if there is a
partial isometry X such that

X∗AjX = Tj for j = 1, . . . ,m.
Let S have a basis {In,A1, . . . ,Am} such that A1, . . . ,Am are Hermitian.
Then S is an OMAX if and only if (T1, . . . ,Tm) ∈ B(H)m has a joint
dilation of the form (I ⊗ A1, . . . , I ⊗ Am) whenever

W (T1, . . . ,Tm) ⊆ conv W (A1, . . . ,Am).
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Extension of Mirman’s result

If W (T1,T2,T3) lies inside in a simplex in R3 with vertices:

v1 =
(

a1
a2
a3

)
, v2 =

(
b1
b2
b3

)
, v3 =

(
c1
c2
c3

)
, v4 =

(
d1
d2
d3

)
,

then (T1,T2,T3) has a joint dilation (D1,D2,D3) with

Dj = I ⊗ diag (aj , bj , cj , dj ) for j = 1, 2, 3.
Note that one can choose any v1, v2, v3, v4 ∈ R3 as long as

W (T1,T2,T3) ⊆ conv {v1, v2, v3, v4}.
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Joint dilation
The result of Mirman asserts that T ∈ B(H) has a dilation of the form I ⊗ A
whenever W (T ) ⊆W (A) if A ∈ M3 is normal or if W (A) is a triangular disk.

Theorem [Binding,Farenick,Li,1995]
Let T1, . . . ,Tm ∈ B(H) be self-adjoint such that W (T1, . . . ,Tm) has
non-empty interior in Rm. That is, {I,T1, . . . ,Tm} is linearly independent.

Suppose S ⊆ Rm is a simplex with vertices

v1 =

(
v11

...
v1m

)
, · · · , vm+1 =

(vm+1,1
...

vm+1,m

)
∈ Rm.

Then W (T1, . . . ,Tm) ⊆ S if and only if T1, . . . ,Tm has a joint dilation to the
diagonal operators

IN ⊗ Aj with Aj =

(v1j
. . .

vm+1,j

)
∈ Mm+1, j = 1, . . . ,m.

That is, there is a partial isometry X such that

X∗(IN ⊗ Aj )X = Tj , j = 1, . . . ,m.
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Operator systems of higher dimension

Theorem [Li and Poon, 2019+]

If S = Mn, then S is NOT an OMAX.

An operator system S ⊆ M2 is an OMAX if and only if S has dimension
less than 4.
An operator system S ⊆ Mn of dimension 3 is an OMAX if it contains a
rank one Hermitian matrix.
An operator system S ⊆ Mn is an OMAX if there is a unitary U ∈ Mn
satisfying U∗SU = {U∗AU : A ∈ S} has a basis

{Ejj : 1 ≤ j ≤ n} ∪ {E2j−1,2j + E2j,2j−1 : 1 ≤ j ≤ n/2}.

Corollary
An operator system S = span {I,A1,A2,A3} ⊆ M3 is an
OMAX if W (A1,A2,A3) is a non-degenerate ice-cream cone,
i.e., the convex hull of a point and an elliptical disk with non-empty interior.
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Quantum channels and operator systems

Mathematically, quantum states are represented by density matrices,

that is, positive semi-definite matrices with trace one.
Quantum channels (also known as quantum operations) are
trace preserving completely positive linear (TPCP) maps.
By a result of Choi (and also Kraus), each TPCP map Φ : Mn → Mm has
the operator sum representation:

Φ(A) = F1AF ∗1 + · · ·+ Fr AF ∗r , A ∈ Mn

with F1, . . . ,Fr ∈ Mm×n satisfying F ∗1 F1 + · · ·+ F ∗r Fr = In.
The operator system associated with Φ is denoted and defined by

S(Φ) = span {F ∗i Fj : 1 ≤ i , j ≤ r} ⊆ Mn.

There is a basis {In,A1, . . . ,Am} for S(Φ) consisting of Hermitian
matrices.
Properties of S(Φ), and hence Φ can be studied via certain generalized
numerical ranges of (A1, . . . ,Am).
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Numerical Ranges and Operator Systems

(Paulsen et al, 2017; Li, Poon and Watrous, 2019+) If S ⊆ Mn is an
operator system, then there is a quantum operation Ψ : Mn → Mk such
that S = S(Ψ). If dimS ≤ `2, then we can have k < n.

(Quantum Channel Complexity) For a given channel Φ and S = S(Φ),
the smallest k for the existence of a quantum channel Ψ : Mn → Mk such
that S(Φ) = S(Ψ) is the complexity of Φ.

(Quantum Channel Capacity) The quantum channel Φ can distinguish k
(pure) quantum state (unambiguously) if and only if there is an n × k
matrix X such that X∗X = Ik and

X∗AjX = Dj ∈ Mk for some diagonal matrix Dj for j = 1, . . . ,m.
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Quantum error correction

There is a quantum error correction code of dimension k if and only if
there is an n × k matrix X such that X∗X = Ik and

X∗AjX = aj Ik with aj ∈ C for j = 1, . . . ,m.

One may get “better” quantum error correction code if there is an n × k
matrix X such that X∗X = Ik and

X∗AjX = (Ip1 ⊗ B1j )⊕ · · · ⊕ (Ipr ⊗ Brj ) =

(Ip1 ⊗ B1j

. . .
Ip1 ⊗ Brj

)
with positive integers p1, . . . , pk , diagonal / square matrices B1j , . . . ,Brj .
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Look forward to hearing your comments.

Thank you for your attention!
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