Name: Patrick X. Rault, prault@unomaha.edu

Affiliation: Department of Mathematics, University of Nebraska at Omaha, USA

Title: Singularities of Base Polynomials and Gau-Wu Numbers

Abstract: In 2013, Gau and Wu introduced a unitary invariant, denoted by k(A), of an $n \times n$ matrix A, which counts the maximal number of orthonormal vectors \mathbf{x}_i such that the scalar products $\langle A\mathbf{x}_i, \mathbf{x}_i \rangle$ lie on the boundary of the numerical range W(A). We refer to k(A) as the Gau-Wu number of the matrix A. We write H_1 and iH_2 for the Hermitian and skew-Hermitian parts of A (respectively), and use them to define the base polynomial $F(x, y, t) = \det(xH_1 + yH_2 + tI)$. In this talk we will take an algebraic-geometric approach and consider the effect of the singularities of the base curve F(x: y: t) = 0, whose dual is the boundary generating curve, to classify k(A). This continues the work of Wang and Wu classifying the Gau-Wu numbers for 3×3 matrices. Our focus on singularities is inspired by Chien and Nakazato, who classified W(A) for 4×4 unitarily irreducible A with irreducible base curve according to singularities of that curve. When A is a unitarily irreducible $n \times n$ matrix, we give necessary conditions for k(A) = 2, characterize k(A) = n, and apply these results to the case of unitarily irreducible 4×4 matrices.

Co-author(s): Kristin A. Camenga (Houghton College), Louis Deaett (Quinnipiac University), Tsvetanka Sendova (Michigan State University), Ilya M. Spitkovsky (New York University Abu Dhabi), Rebekah B. Johnson Yates (Houghton College)