(参考資料)

最小二乗法② 統計学的性質

経済統計分析

△回帰分析と統計学的推定

母集団(真の関係)

■真のモデル(単回帰の例)

$$y_t = \alpha + \beta x_t + \varepsilon_t$$

 α,β : 真の回帰係数(Parameter)

x: 説明変数、y: 被説明変数

 ε . 撹乱項

 $\square x_t$ が与えられると、 $x \ge y$ の真の関係 $(\alpha + \beta x_t)$ に確率的な変動 ε_t が加わって y_t が決定

標本による推定

■最小二乗法による推定

$$y_{t} = \hat{\alpha} + \hat{\beta}x_{t} + \hat{\varepsilon}_{t}$$

説明できる 部分

説明できない 部分=残差

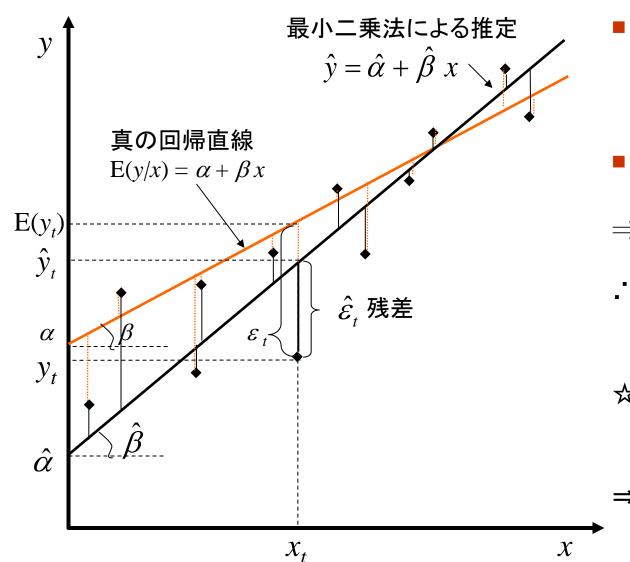
 $\hat{\alpha},\hat{eta}$:回帰係数の推定値(Estimator)

 x_t, y_t : 実現・観察された標本

 $\hat{\varepsilon}_{t}$: 残差項

- □観察された標本 (x_t, y_t) を用いて、説明できない部分 $(残差\hat{\varepsilon}_t)$ が最小となるようにxとyの関係 (α, β) を推定
 - ⇒最小二乗推定量

△回帰分析と統計学的推定〔図示〕



- 真の関係 $y=\alpha+\beta x$ に確率的変動 ε が加わって、観察できる標本 (x_t, y_t) が生じる
- 観察された標本(x_t, y_t)を用いて、α, βを推定
- \Rightarrow 最小二乗推定量 $\hat{\alpha}, \hat{\beta}$
- ∴推定された回帰直線は 真の回帰直線と必ずし も一致しない
- ☆どれだけ正確に推定できるか、望ましい推定量か
- ⇒最小二乗法の統計学 的性質

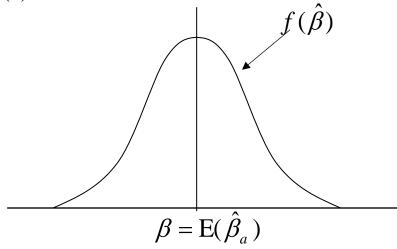
全望ましい推定量とは何か

- 不偏推定量
 - -偏りなく推定される(1回1回の推定値は真の値から誤差が生じるが、誤差の生じ方に偏りがなく、平均的に見れば正しく推定される)
 - =推定量の期待値が真のパラメター値に等しい $E(\hat{\beta}) = \beta$
- 一致推定量
 - =データ(標本)の数が増えると、推定値は真の値に限りなく収束する(一致する)ようになる
- 効率的推定量
 - =推定値のバラツキ(分散)が小さく、精度が高く推定できる

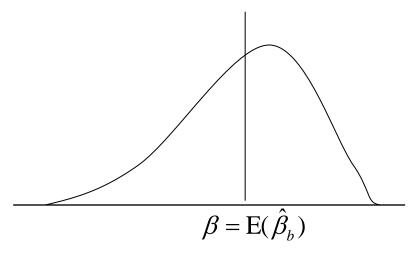
M

△望ましい推定量~不偏推定量

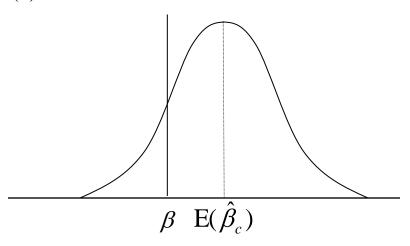
(a) 左右対称分布で不偏



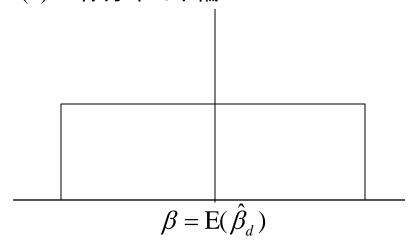
(b) 非対称だが不偏



(c) 左右対称だが不偏でない



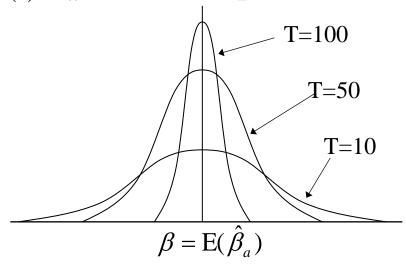
(d) 一様分布で不偏



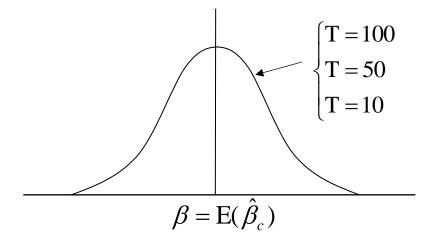
N

△望ましい推定量~一致推定量

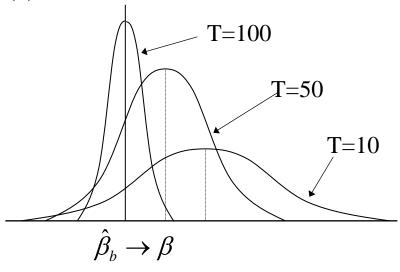
(a) 不偏でかつ一致性をもつ



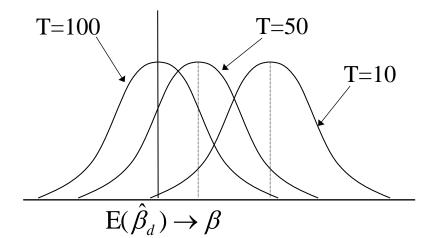
(c) 不偏だが一致性はない



(b) 不偏ではないが一致性をもつ



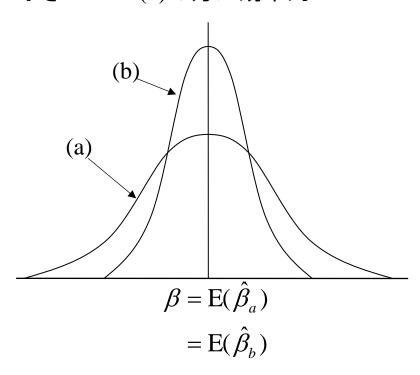
(d) 漸近不偏だが一致性はない

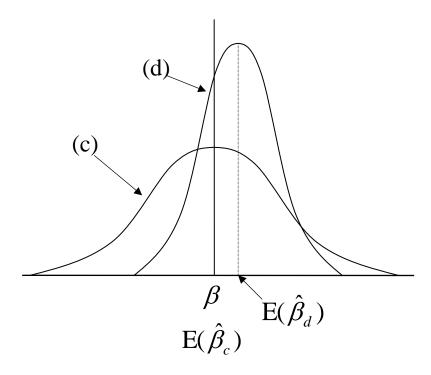


△望ましい推定量~効率的推定量

(a)(b)ともに不偏だが(b)の方が分散が 小さい ⇒ (b)の方が効率的

(c)は不偏だが分散が大きく、(d)は不偏では ないが分散が小さい ⇒ どちらが効率的?





- 通常は、(a)(b)のように「不偏推定量」というような制限を付けたうちで、どちら が効率的かを選ぶ ⇒ 最小分散不偏推定量
- (c)(d)のような場合にどちらが効率的かは、一概には言えない

△最小二乗法の統計学的性質①

回帰分析における「標準的な統計学的仮定」が満たされるとき、<u>最小二乗推定量は、統計学的に望ましい以下の性質を持つ</u>

- □ 最小二乗推定量は、「最良線形不偏推定量 (BLUE: Best Linier Unbiased Estimator)」 である
- □ 最小二乗推定量は、「一致推定量」である

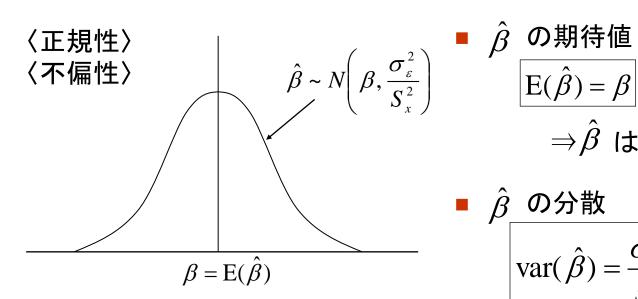
△ 最小二乗法の統計学的性質② 最小二乗推定量の確率分布(単回帰)

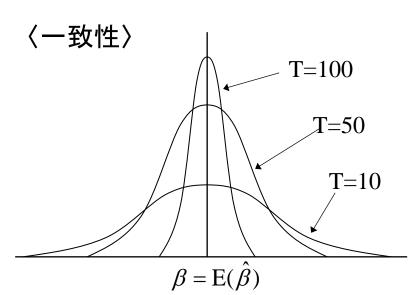
単回帰モデル $y_t = \alpha + \beta x_t + \varepsilon_t$; $\varepsilon_t \sim \operatorname{iid} N(0, \sigma_{\varepsilon}^2)$ の最小二乗推定量 $\hat{\alpha}, \hat{\beta}$ は、

 $\hat{\alpha}$ は、期待値 α ,分散 $\sigma_{\varepsilon}^{2} \left(\frac{1}{T} + \frac{\bar{x}^{2}}{s_{x}^{2}}\right)$ の正規分布に従う $\hat{\beta}$ は、期待値 β ,分散 $\sigma_{\varepsilon}^{2}/s_{x}^{2}$ の正規分布に従う

$$\left| \hat{\alpha} \sim N \left(\alpha, \sigma_{\varepsilon}^{2} \left(\frac{1}{T} + \frac{\overline{x}^{2}}{s_{x}^{2}} \right) \right), \quad \hat{\beta} \sim N \left(\beta, \frac{\sigma_{\varepsilon}^{2}}{s_{x}^{2}} \right) \right|$$

△最小二乗法の統計学的性質[図示]





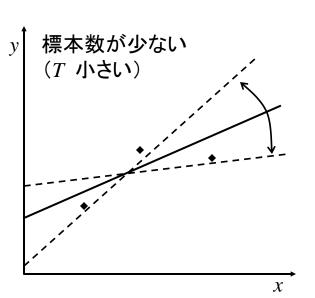
$$E(\hat{\beta}) = \beta$$

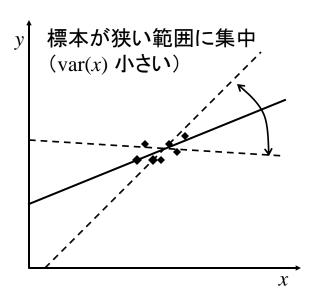
 $ightarrow \hat{eta}$ は**不偏推定量**

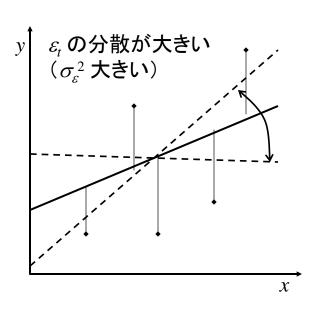
$$\operatorname{var}(\hat{\beta}) = \frac{\sigma_{\varepsilon}^{2}}{s_{x}^{2}} = \frac{\sigma_{\varepsilon}^{2}}{T \operatorname{var}(x)}$$

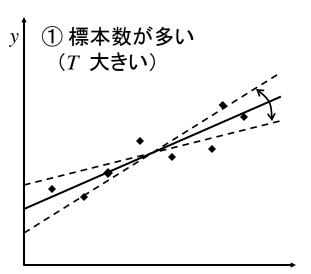
- $\therefore \hat{\beta}$ の分散が小さくなるのは
- ① 標本数 T が大きいとき $\Rightarrow \beta$ は一致推定量
- ② x の分散 var(x) が大きいとき (広い範囲の標本が得られるとき)
- ③ 撹乱項 ε_{t} の分散 σ_{ε}^{2} が小さいとき

△精度の高い推定結果が得られる場合

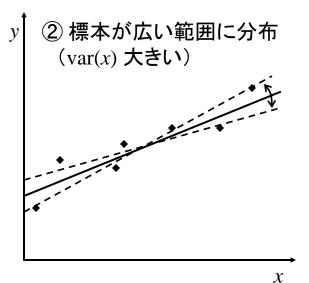


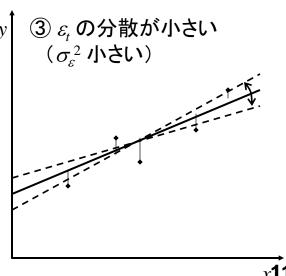






 χ





△最小二乗法の統計学的性質③

〇 撹乱項の分散 σ_{ε}^2 の不偏推定量は、RSS を自由度で割って得られる

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{\Sigma \hat{\varepsilon}_{t}^{2}}{T - k} = \frac{RSS}{\exists \exists \exists \exists}$$

 \bigcirc RSS と撹乱項の分散 σ_{ε}^2 の比は、自由度 T-k のカイニ乗分布に従う

$$\frac{RSS}{\sigma_s^2} \sim \chi^2(T-k)$$

〇 最小二乗推定量の推定誤差 \hat{eta}_i - eta_i をその標準誤差 $\hat{\sigma}_{\hat{eta}_i}$ で除したものは、自由度 T-k の t 分布に従う

$$t = \frac{\hat{\beta}_i - \beta_i}{\hat{\sigma}_{\hat{\beta}_i}} \sim t(T - k)$$

Ŋ

△回帰分析における「標準的仮定」

$$y_{t} = \alpha + \beta_{1} x_{1t} + \beta_{2} x_{2t} + \dots + \beta_{k-1} x_{k-1t} + \varepsilon_{t}$$
$$\varepsilon_{t} \sim iid \ N(0, \sigma_{\varepsilon}^{2})$$

- 1. 被説明変数 y_t に関する仮定
 - 被説明変数 y_t は、説明変数 $x_{1t},...,x_{k-1t}$ の線形関数 (-次関数)となる確定的部分と、確率的部分 (撹乱項 ε_t) からなる確率変数である
- 2. 説明変数 $x_{1t},...,x_{k-1t}$ に関する仮定 説明変数 $x_{1t},...,x_{k-1t}$ は、互いに線形独立な非確率変数である
- 3. 撹乱項 ε_l に関する仮定 撹乱項 ε_l は、互いに独立に期待値0,分散 σ_{ε}^2 の同一の正規分布に従う確率変数である

٧

△仮定1:被説明変数に関する仮定

(仮定1)

被説明変数 y_t は、説明変数 x_{1t} ,..., x_{k-1t} の線形関数(一次関数)となる確定的部分と、確率的部分(撹乱項 ε_t)からなる確率変数である

$$y_{t} = \alpha + \beta_{1}x_{1t} + \beta_{2}x_{2t} + ... + \beta_{k-1}x_{k-1t} + \varepsilon_{t}$$
 確定的部分 確率的部分

- (仮定1-1) $\frac{線形性}{\theta}$: y_t は説明変数 x_{1t} , ..., x_{k-1t} と撹乱項 ε_t の線形結合で表される
- (仮定1-2) $\frac{説明変数の妥当性}{(U)}: y_t$ に重大な影響を与える変数は、すべてモデルの説明変数 x_{1t} …, x_{k-1t} に含まれる
- (仮定1-3) $\underline{$ 安定性 $\underline{}$: 回帰パラメター α , β_1 , ..., β_{k-1} は、すべての標本について一定不変である

△仮定2: 説明変数に関する仮定

(仮定2)

説明変数 $x_{1t}, ..., x_{k-1t}$ は、互いに線形独立な非確率変数である

- (仮定2-1) $\frac{線形独立性}$: 説明変数 x_{1t} , ..., x_{k-1t} の間に純粋な線形関係(1次関数で表される関係(完全な相関関係など))は存在していない
- (仮定2-2) <u>非確率変数</u>: 説明変数 x_{1t} …, x_{k-1t} は、確率的な変動をしない非確率変数である

Ŋ

△仮定3:被説明変数に関する仮定

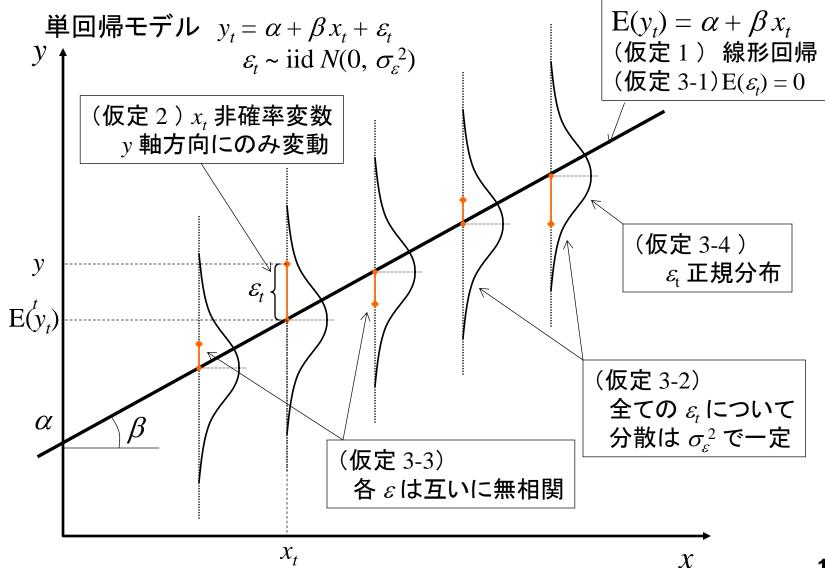
(仮定3)

撹乱項 ε_t は、互いに独立に、期待値 0, 分散 σ_{ε}^2 の同一の正規分布に従う確率変数である

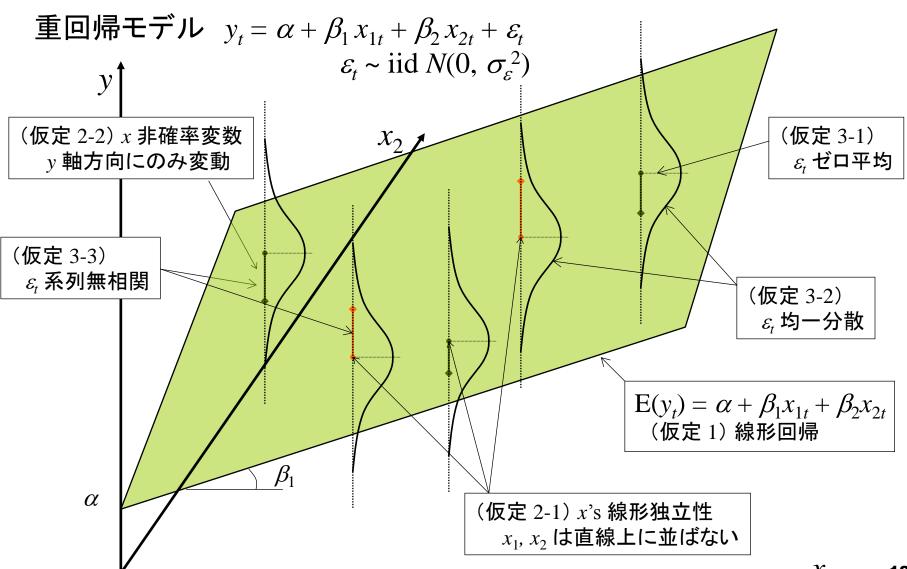
$$\varepsilon_t \sim \text{iid } N(0, \, \sigma_{\varepsilon}^{\, 2})$$

- (仮定3-1) $\underline{\mathbf{t}}$ 口平均: ε_t の期待値はゼロ $[\mathrm{E}(\varepsilon_t)=0]$
- (仮定3-2) <u>均一分散</u>: ε_t の分散は全標本について σ_{ε}^2 で一定 $[\operatorname{var}(\varepsilon_t) = \sigma_{\varepsilon}^2 \text{ for all } t]$
- (仮定3-3) <u>系列無相関</u>: ε_t は互いに無相関 [$\text{cov}(\varepsilon_t, \varepsilon_s) = 0$ for all $t \neq s$]
- (仮定3-4) 正規性: ε_t は正規分布する $[\varepsilon_t \sim N]$

△仮定1~3の意味:単回帰の場合



△仮定1~3の意味:重回帰の場合



(仮定 2-1) 違反の場合: x_{1t}, x_{2t} が非線形独立(直線状に並ぶ) \Rightarrow 平面が定まらない= α, β_1, β_2 が定まらない(推定不能)

